def _vec2mat(v):
return matrix(v.base_ring(), sqrt(v.degree()), v.list())
-def gram_schmidt(v):
+def gram_schmidt(v, inner_product=None):
"""
Perform Gram-Schmidt on the list ``v`` which are assumed to be
vectors over the same base ring. Returns a list of orthonormalized
sage: from mjo.eja.eja_utils import gram_schmidt
- EXAMPLES::
+ EXAMPLES:
+
+ The usual inner-product and norm are default::
sage: v1 = vector(QQ,(1,2,3))
sage: v2 = vector(QQ,(1,-1,6))
sage: bool(u[1].inner_product(u[2]) == 0)
True
+
+ But if you supply a custom inner product, the result is
+ orthonormal with respect to that (and not the usual inner
+ product)::
+
+ sage: v1 = vector(QQ,(1,2,3))
+ sage: v2 = vector(QQ,(1,-1,6))
+ sage: v3 = vector(QQ,(2,1,-1))
+ sage: v = [v1,v2,v3]
+ sage: B = matrix(QQ, [ [6, 4, 2],
+ ....: [4, 5, 4],
+ ....: [2, 4, 9] ])
+ sage: ip = lambda x,y: (B*x).inner_product(y)
+ sage: norm = lambda x: ip(x,x)
+ sage: u = gram_schmidt(v,ip)
+ sage: all( norm(u_i) == 1 for u_i in u )
+ True
+ sage: ip(u[0],u[1]).is_zero()
+ True
+ sage: ip(u[0],u[2]).is_zero()
+ True
+ sage: ip(u[1],u[2]).is_zero()
+ True
+
TESTS:
Ensure that zero vectors don't get in the way::
True
"""
+ if inner_product is None:
+ inner_product = lambda x,y: x.inner_product(y)
+ norm = lambda x: inner_product(x,x).sqrt()
+
def proj(x,y):
- return (y.inner_product(x)/x.inner_product(x))*x
+ return (inner_product(x,y)/inner_product(x,x))*x
v = list(v) # make a copy, don't clobber the input
R = v[0].base_ring()
# First orthogonalize...
- for i in xrange(1,len(v)):
+ for i in range(1,len(v)):
# Earlier vectors can be made into zero so we have to ignore them.
v[i] -= sum( proj(v[j],v[i]) for j in range(i) if not v[j].is_zero() )
# Just normalize. If the algebra is missing the roots, we can't add
# them here because then our subalgebra would have a bigger field
# than the superalgebra.
- for i in xrange(len(v)):
- v[i] = v[i] / v[i].norm()
+ for i in range(len(v)):
+ v[i] = v[i] / norm(v[i])
return v