....: [0,0] ])
sage: E22 = matrix(AA, [ [0,0],
....: [0,1] ])
- sage: K1 = FiniteDimensionalEJASubalgebra(J, (J(E11),))
+ sage: K1 = FiniteDimensionalEJASubalgebra(J, (J(E11),), associative=True)
sage: K1.one().to_matrix()
[1 0]
[0 0]
- sage: K2 = FiniteDimensionalEJASubalgebra(J, (J(E22),))
+ sage: K2 = FiniteDimensionalEJASubalgebra(J, (J(E22),), associative=True)
sage: K2.one().to_matrix()
[0 0]
[0 1]
....: [1,0,0] ])
sage: x = J(X)
sage: basis = ( x, x^2 ) # x^2 is the identity matrix
- sage: K = FiniteDimensionalEJASubalgebra(J, basis, orthonormalize=False)
+ sage: K = FiniteDimensionalEJASubalgebra(J,
+ ....: basis,
+ ....: associative=True,
+ ....: orthonormalize=False)
sage: K(J.one())
f1
sage: K(J.one() + x)