return self.span_of_powers().dimension()
+
def operator_matrix(self):
"""
Return the matrix that represents left- (or right-)
return fda_elt.matrix().transpose()
+ def natural_representation(self):
+ """
+ Return a more-natural representation of this element.
+
+ Every finite-dimensional Euclidean Jordan Algebra is a
+ direct sum of five simple algebras, four of which comprise
+ Hermitian matrices. This method returns the original
+ "natural" representation of this element as a Hermitian
+ matrix, if it has one. If not, you get the usual representation.
+
+ EXAMPLES::
+
+ sage: J = ComplexHermitianSimpleEJA(3)
+ sage: J.one()
+ e0 + e5 + e8
+ sage: J.one().natural_representation()
+ [1 0 0 0 0 0]
+ [0 1 0 0 0 0]
+ [0 0 1 0 0 0]
+ [0 0 0 1 0 0]
+ [0 0 0 0 1 0]
+ [0 0 0 0 0 1]
+
+ """
+ B = self.parent().natural_basis()
+ W = B[0].matrix_space()
+ return W.linear_combination(zip(self.vector(), B))
+
def minimal_polynomial(self):
"""