OUTPUT:
- A ``MatrixSpace`` object `M` such that every matrix `L \in M` is
- Lyapunov-like on this cone.
+ A list of matrices forming a basis for the space of all
+ Lyapunov-like transformations on the given cone.
+
+ EXAMPLES:
+
+ The trivial cone has no Lyapunov-like transformations::
+
+ sage: L = ToricLattice(0)
+ sage: K = Cone([], lattice=L)
+ sage: LL(K)
+ []
+
+ The Lyapunov-like transformations on the nonnegative orthant are
+ simply diagonal matrices::
+
+ sage: K = Cone([(1,)])
+ sage: LL(K)
+ [[1]]
+
+ sage: K = Cone([(1,0),(0,1)])
+ sage: LL(K)
+ [
+ [1 0] [0 0]
+ [0 0], [0 1]
+ ]
+
+ sage: K = Cone([(1,0,0),(0,1,0),(0,0,1)])
+ sage: LL(K)
+ [
+ [1 0 0] [0 0 0] [0 0 0]
+ [0 0 0] [0 1 0] [0 0 0]
+ [0 0 0], [0 0 0], [0 0 1]
+ ]
+
+ Only the identity matrix is Lyapunov-like on the `L^{3}_{1}` and
+ `L^{3}_{\infty}` cones [Rudolf et al.]_::
+
+ sage: L31 = Cone([(1,0,1), (0,-1,1), (-1,0,1), (0,1,1)])
+ sage: LL(L31)
+ [
+ [1 0 0]
+ [0 1 0]
+ [0 0 1]
+ ]
+
+ sage: L3infty = Cone([(0,1,1), (1,0,1), (0,-1,1), (-1,0,1)])
+ sage: LL(L3infty)
+ [
+ [1 0 0]
+ [0 1 0]
+ [0 0 1]
+ ]
+
+ TESTS:
+
+ The inner product `\left< L\left(x\right), s \right>` is zero for
+ every pair `\left( x,s \right)` in the discrete complementarity set
+ of the cone::
+
+ sage: K = random_cone(max_dim=8, max_rays=10)
+ sage: C_of_K = discrete_complementarity_set(K)
+ sage: l = [ (L*x).inner_product(s) for (x,s) in C_of_K for L in LL(K) ]
+ sage: sum(map(abs, l))
+ 0
"""
V = K.lattice().vector_space()