if n <= 1:
associative = True
- super(RealSymmetricEJA, self).__init__(self._denormalized_basis(n),
- self.jordan_product,
- self.trace_inner_product,
- associative=associative,
- **kwargs)
+ super().__init__(self._denormalized_basis(n),
+ self.jordan_product,
+ self.trace_inner_product,
+ associative=associative,
+ **kwargs)
# TODO: this could be factored out somehow, but is left here
# because the MatrixEJA is not presently a subclass of the
True
"""
- super(ComplexMatrixEJA,cls).real_embed(M)
+ super().real_embed(M)
n = M.nrows()
# We don't need any adjoined elements...
True
"""
- super(ComplexMatrixEJA,cls).real_unembed(M)
+ super().real_unembed(M)
n = ZZ(M.nrows())
d = cls.dimension_over_reals()
F = cls.complex_extension(M.base_ring())
if n <= 1:
associative = True
- super(ComplexHermitianEJA, self).__init__(self._denormalized_basis(n),
- self.jordan_product,
- self.trace_inner_product,
- associative=associative,
- **kwargs)
+ super().__init__(self._denormalized_basis(n),
+ self.jordan_product,
+ self.trace_inner_product,
+ associative=associative,
+ **kwargs)
# TODO: this could be factored out somehow, but is left here
# because the MatrixEJA is not presently a subclass of the
# FDEJA class that defines rank() and one().
True
"""
- super(QuaternionMatrixEJA,cls).real_embed(M)
+ super().real_embed(M)
quaternions = M.base_ring()
n = M.nrows()
True
"""
- super(QuaternionMatrixEJA,cls).real_unembed(M)
+ super().real_unembed(M)
n = ZZ(M.nrows())
d = cls.dimension_over_reals()
if n <= 1:
associative = True
- super(QuaternionHermitianEJA, self).__init__(self._denormalized_basis(n),
- self.jordan_product,
- self.trace_inner_product,
- associative=associative,
- **kwargs)
+ super().__init__(self._denormalized_basis(n),
+ self.jordan_product,
+ self.trace_inner_product,
+ associative=associative,
+ **kwargs)
# TODO: this could be factored out somehow, but is left here
# because the MatrixEJA is not presently a subclass of the
if n <= 2:
associative = True
- super(BilinearFormEJA, self).__init__(column_basis,
- jordan_product,
- inner_product,
- associative=associative,
- **kwargs)
+ super().__init__(column_basis,
+ jordan_product,
+ inner_product,
+ associative=associative,
+ **kwargs)
# The rank of this algebra is two, unless we're in a
# one-dimensional ambient space (because the rank is bounded
# But also don't pass check_field=False here, because the user
# can pass in a field!
- super(JordanSpinEJA, self).__init__(B, **kwargs)
+ super().__init__(B, **kwargs)
@staticmethod
def _max_random_instance_size():
if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
- super(TrivialEJA, self).__init__(basis,
- jordan_product,
- inner_product,
- associative=True,
- **kwargs)
+ super().__init__(basis,
+ jordan_product,
+ inner_product,
+ associative=True,
+ **kwargs)
# The rank is zero using my definition, namely the dimension of the
# largest subalgebra generated by any element.