superscript when that superscript would be one: $\Nn[1]$,
$\Zn[1]$, $\Qn[1]$, $\Rn[1]$, $\Cn[1]$. However, if the
superscript is (say) two, then it appears: $\Nn[2]$, $\Zn[2]$,
- $\Qn[2]$, $\Rn[2]$, $\Cn[2]$. Finally, we have the four standard
- types of intervals in $\Rn[1]$,
+ $\Qn[2]$, $\Rn[2]$, $\Cn[2]$. The symbols $\Fn[1]$, $\Fn[2]$,
+ et cetera, are available for use with a generic field.
+
+ Finally, we have the four standard types of intervals in $\Rn[1]$,
%
\begin{align*}
\intervaloo{a}{b} &= \setc{ x \in \Rn[1]}{ a < x < b },\\
}
\fi
+% The n-dimensional product space of a generic field F.
+\newcommand*{\Fn}[1][n]{
+ \mathbb{F}\if\detokenize{#1}\detokenize{1}{}\else^{#1}\fi
+}
+
+\ifdefined\newglossaryentry
+ \newglossaryentry{F}{
+ name={\ensuremath{\Fn[1]}},
+ description={a generic field},
+ sort=F
+ }
+\fi
+
% An indexed arbitrary binary operation such as the union or
% intersection of an infinite number of sets. The first argument is