%
% Place the argument in matching left/right parntheses.
-\providecommand*{\of}[1]{ \left( {#1} \right) }
+\providecommand*{\of}[1]{ \left({#1}\right) }
% Group terms using parentheses.
-\providecommand*{\qty}[1]{ \left( {#1} \right) }
+\providecommand*{\qty}[1]{ \left({#1}\right) }
% Group terms using square brackets.
-\providecommand*{\sqty}[1]{ \left[ {#1} \right] }
+\providecommand*{\sqty}[1]{ \left[{#1}\right] }
% Create a set from the given elements
-\providecommand*{\set}[1]{ \left\lbrace {#1} \right\rbrace }
+\providecommand*{\set}[1]{\left\lbrace{#1}\right\rbrace}
% A set comprehension, where the ``such that...'' bar is added
% automatically. The bar was chosen over a colon to avoid ambiguity
% with the L : V -> V notation. We can't leverage \set here because \middle
% needs \left and \right present.
-\providecommand*{\setc}[2]{ \left\lbrace {#1}\ \middle|\ {#2} \right\rbrace }
+\providecommand*{\setc}[2]{\left\lbrace{#1}\ \middle|\ {#2} \right\rbrace}
% A pair of things.
-\providecommand*{\pair}[2]{ \left( {#1}, {#2} \right) }
+\providecommand*{\pair}[2]{ \left({#1},{#2}\right) }
% The Cartesian product of two things.
-\providecommand*{\cartprod}[2]{ {#1} \times {#2} }
+\providecommand*{\cartprod}[2]{ {#1}\times{#2} }
% The Cartesian product of three things.
\providecommand*{\cartprodthree}[3]{ \cartprod{{#1}}{\cartprod{{#2}}{{#3}}} }
%
% Standard cone inequalities.
-\newcommand*{\gek}{ \succcurlyeq }
-\newcommand*{\gtk}{ \succ }
-\newcommand*{\lek}{ \preccurlyeq }
-\newcommand*{\ltk}{ \prec }
+\newcommand*{\gek}{\succcurlyeq}
+\newcommand*{\gtk}{\succ}
+\newcommand*{\lek}{\preccurlyeq}
+\newcommand*{\ltk}{\prec}
% Starred versions of the cone inequality operators.
\input{mjo-common}
% Absolute value (modulis) of a scalar.
-\newcommand*{\abs}[1]{ \left\lvert {#1} \right\rvert }
+\newcommand*{\abs}[1]{\left\lvert{#1}\right\rvert}
% Norm of a vector.
-\newcommand*{\norm}[1]{ \left\lVert {#1} \right\rVert }
+\newcommand*{\norm}[1]{\left\lVert{#1}\right\rVert}
% The inner product between its two arguments.
-\newcommand*{\ip}[2]{ \langle {#1}, {#2} \rangle }
+\newcommand*{\ip}[2]{\langle{#1},{#2}\rangle}
% The tensor product of its two arguments.
-\newcommand*{\tp}[2]{ {#1} \otimes {#2} }
+\newcommand*{\tp}[2]{ {#1}\otimes{#2} }
% The ``span of'' operator. The name \span is already taken.
-\newcommand*{\spanof}[1]{ \operatorname{span} \of{{#1}} }
+\newcommand*{\spanof}[1]{ \operatorname{span}\of{{#1}} }
% The ``co-dimension of'' operator.
\newcommand*{\codim}{ \operatorname{codim} }
% The trace of an operator.
-\newcommand*{\trace}[1]{ \operatorname{trace} \of{{#1}} }
+\newcommand*{\trace}[1]{ \operatorname{trace}\of{{#1}} }
% The orthogonal projection of its second argument onto the first.
\newcommand*{\proj}[2] { \operatorname{proj}\of{#1, #2} }
% The ``Automorphism group of'' operator.
-\newcommand*{\Aut}[1]{ \operatorname{Aut} \of{{#1}} }
+\newcommand*{\Aut}[1]{ \operatorname{Aut}\of{{#1}} }
% The ``Lie algebra of'' operator.
-\newcommand*{\Lie}[1]{ \operatorname{Lie} \of{{#1}} }
+\newcommand*{\Lie}[1]{ \operatorname{Lie}\of{{#1}} }
% The ``write a matrix as a big vector'' operator.
-\newcommand*{\vectorize}[1]{ \operatorname{vec} \of{{#1}} }
+\newcommand*{\vectorize}[1]{ \operatorname{vec}\of{{#1}} }
% The ``write a big vector as a matrix'' operator.
-\newcommand*{\matricize}[1]{ \operatorname{mat} \of{{#1}} }
+\newcommand*{\matricize}[1]{ \operatorname{mat}\of{{#1}} }
% An inline column vector, with parentheses and a transpose operator.
-\newcommand*{\colvec}[1]{ \left( {#1} \right)^{T} }
+\newcommand*{\colvec}[1]{ \left({#1}\right)^{T} }
% Bounded linear operators on some space. The required argument is the
% domain of those operators, and the optional argument is the