EXAMPLES::
- sage: A = HurwitzMatrixAlgebra(QQbar, ZZ, 2)
+ sage: A = HurwitzMatrixAlgebra(2, QQbar, ZZ)
sage: M = A([ [ 0,I],
....: [-I,0] ])
sage: M.is_hermitian()
"""
Element = HurwitzMatrixAlgebraElement
- def __init__(self, entry_algebra, scalars, n, **kwargs):
+ def __init__(self, n, entry_algebra, scalars, **kwargs):
from sage.rings.all import RR
if not scalars.is_subring(RR):
# Not perfect, but it's what we're using.
raise ValueError("scalar field is not real")
- super().__init__(entry_algebra, scalars, n, **kwargs)
+ super().__init__(n, entry_algebra, scalars, **kwargs)
def entry_algebra_gens(self):
r"""
sets of generators have cartinality 1,2,4, and 8 as you'd
expect::
- sage: HurwitzMatrixAlgebra(AA, AA, 2).entry_algebra_gens()
+ sage: HurwitzMatrixAlgebra(2, AA, AA).entry_algebra_gens()
(1,)
- sage: HurwitzMatrixAlgebra(QQbar, AA, 2).entry_algebra_gens()
+ sage: HurwitzMatrixAlgebra(2, QQbar, AA).entry_algebra_gens()
(1, I)
sage: Q = QuaternionAlgebra(AA,-1,-1)
- sage: HurwitzMatrixAlgebra(Q, AA, 2).entry_algebra_gens()
+ sage: HurwitzMatrixAlgebra(2, Q, AA).entry_algebra_gens()
(1, i, j, k)
sage: O = Octonions()
- sage: HurwitzMatrixAlgebra(O, AA, 2).entry_algebra_gens()
+ sage: HurwitzMatrixAlgebra(2, O, AA).entry_algebra_gens()
(e0, e1, e2, e3, e4, e5, e6, e7)
"""
SETUP::
- sage: from mjo.hurwitz import OctonionMatrixAlgebra
+ sage: from mjo.hurwitz import Octonions, OctonionMatrixAlgebra
EXAMPLES::
sage: OctonionMatrixAlgebra(3)
Module of 3 by 3 matrices with entries in Octonion algebra with base
ring Algebraic Real Field over the scalar ring Algebraic Real Field
- sage: OctonionMatrixAlgebra(3,QQ)
- Module of 3 by 3 matrices with entries in Octonion algebra with base
- ring Rational Field over the scalar ring Rational Field
+
+ ::
+
+ sage: OctonionMatrixAlgebra(3,scalars=QQ)
+ Module of 3 by 3 matrices with entries in Octonion algebra with
+ base ring Rational Field over the scalar ring Rational Field
+
+ ::
+
+ sage: O = Octonions(RR)
+ sage: A = OctonionMatrixAlgebra(1,O)
+ sage: A
+ Module of 1 by 1 matrices with entries in Octonion algebra with
+ base ring Real Field with 53 bits of precision over the scalar
+ ring Algebraic Real Field
+ sage: A.one()
+ +---------------------+
+ | 1.00000000000000*e0 |
+ +---------------------+
::
::
- sage: A1 = OctonionMatrixAlgebra(1,QQ)
- sage: A2 = OctonionMatrixAlgebra(1,QQ)
+ sage: A1 = OctonionMatrixAlgebra(1,scalars=QQ)
+ sage: A2 = OctonionMatrixAlgebra(1,scalars=QQ)
sage: cartesian_product([A1,A2])
Module of 1 by 1 matrices with entries in Octonion algebra with
base ring Rational Field over the scalar ring Rational Field (+)
True
"""
- def __init__(self, n, scalars=AA, prefix="E", **kwargs):
- super().__init__(Octonions(field=scalars),
+ def __init__(self, n, entry_algebra=None, scalars=AA, **kwargs):
+ if entry_algebra is None:
+ entry_algebra = Octonions(field=scalars)
+ super().__init__(n,
+ entry_algebra,
scalars,
- n,
- prefix=prefix,
**kwargs)
class QuaternionMatrixAlgebra(HurwitzMatrixAlgebra):
Module of 3 by 3 matrices with entries in Quaternion
Algebra (-1, -1) with base ring Algebraic Real Field
over the scalar ring Algebraic Real Field
- sage: QuaternionMatrixAlgebra(3,QQ)
+
+ ::
+
+ sage: QuaternionMatrixAlgebra(3,scalars=QQ)
Module of 3 by 3 matrices with entries in Quaternion
Algebra (-1, -1) with base ring Rational Field over
the scalar ring Rational Field
+ ::
+
+ sage: Q = QuaternionAlgebra(RDF, -1, -1)
+ sage: A = QuaternionMatrixAlgebra(1,Q)
+ sage: A
+ Module of 1 by 1 matrices with entries in Quaternion Algebra
+ (-1.0, -1.0) with base ring Real Double Field over the scalar
+ ring Algebraic Real Field
+ sage: A.one()
+ +-----+
+ | 1.0 |
+ +-----+
+
::
sage: A = QuaternionMatrixAlgebra(2)
::
- sage: A1 = QuaternionMatrixAlgebra(1,QQ)
- sage: A2 = QuaternionMatrixAlgebra(2,QQ)
+ sage: A1 = QuaternionMatrixAlgebra(1,scalars=QQ)
+ sage: A2 = QuaternionMatrixAlgebra(2,scalars=QQ)
sage: cartesian_product([A1,A2])
Module of 1 by 1 matrices with entries in Quaternion Algebra
(-1, -1) with base ring Rational Field over the scalar ring
True
"""
- def __init__(self, n, scalars=AA, **kwargs):
- # The -1,-1 gives us the "usual" definition of quaternion
- from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
- Q = QuaternionAlgebra(scalars,-1,-1)
- super().__init__(Q, scalars, n, **kwargs)
+ def __init__(self, n, entry_algebra=None, scalars=AA, **kwargs):
+ if entry_algebra is None:
+ # The -1,-1 gives us the "usual" definition of quaternion
+ from sage.algebras.quatalg.quaternion_algebra import (
+ QuaternionAlgebra
+ )
+ entry_algebra = QuaternionAlgebra(scalars,-1,-1)
+ super().__init__(n, entry_algebra, scalars, **kwargs)
class ComplexMatrixAlgebra(HurwitzMatrixAlgebra):
sage: ComplexMatrixAlgebra(3)
Module of 3 by 3 matrices with entries in Algebraic Field
over the scalar ring Algebraic Real Field
- sage: ComplexMatrixAlgebra(3,QQ)
+
+ ::
+
+ sage: ComplexMatrixAlgebra(3,scalars=QQ)
Module of 3 by 3 matrices with entries in Algebraic Field
over the scalar ring Rational Field
+ ::
+
+ sage: A = ComplexMatrixAlgebra(1,CC)
+ sage: A
+ Module of 1 by 1 matrices with entries in Complex Field with
+ 53 bits of precision over the scalar ring Algebraic Real Field
+ sage: A.one()
+ +------------------+
+ | 1.00000000000000 |
+ +------------------+
+
::
sage: A = ComplexMatrixAlgebra(2)
::
- sage: A1 = ComplexMatrixAlgebra(1,QQ)
- sage: A2 = ComplexMatrixAlgebra(2,QQ)
+ sage: A1 = ComplexMatrixAlgebra(1,scalars=QQ)
+ sage: A2 = ComplexMatrixAlgebra(2,scalars=QQ)
sage: cartesian_product([A1,A2])
Module of 1 by 1 matrices with entries in Algebraic Field over
the scalar ring Rational Field (+) Module of 2 by 2 matrices with
True
"""
- def __init__(self, n, scalars=AA, **kwargs):
- from sage.rings.all import QQbar
- super().__init__(QQbar, scalars, n, **kwargs)
+ def __init__(self, n, entry_algebra=None, scalars=AA, **kwargs):
+ if entry_algebra is None:
+ from sage.rings.all import QQbar
+ entry_algebra = QQbar
+ super().__init__(n, entry_algebra, scalars, **kwargs)
EXAMPLES::
- sage: M = MatrixAlgebra(QQbar,RDF,2)
+ sage: M = MatrixAlgebra(2, QQbar,RDF)
sage: A = M.monomial((0,0,1)) + 4*M.monomial((0,1,1))
sage: A
+-----+-----+
EXAMPLES::
- sage: MatrixAlgebra(ZZ,ZZ,2).zero()
+ sage: MatrixAlgebra(2,ZZ,ZZ).zero()
+---+---+
| 0 | 0 |
+---+---+
EXAMPLES::
- sage: A = MatrixAlgebra(ZZ,ZZ,2)
+ sage: A = MatrixAlgebra(2,ZZ,ZZ)
sage: A([[1,2],[3,4]]).list()
[1, 2, 3, 4]
EXAMPLES::
- sage: M = MatrixAlgebra(ZZ,ZZ,2)([[1,2],[3,4]])
+ sage: M = MatrixAlgebra(2,ZZ,ZZ)([[1,2],[3,4]])
sage: M[0,0]
1
sage: M[0,1]
sage: entries = MatrixSpace(ZZ,2)
sage: scalars = ZZ
- sage: M = MatrixAlgebra(entries, scalars, 2)
+ sage: M = MatrixAlgebra(2, entries, scalars)
sage: I = entries.one()
sage: Z = entries.zero()
sage: M([[I,Z],[Z,I]]).trace()
sage: set_random_seed()
sage: entries = QuaternionAlgebra(QQ,-1,-1)
- sage: M = MatrixAlgebra(entries, QQ, 3)
+ sage: M = MatrixAlgebra(3, entries, QQ)
sage: M.random_element().matrix_space() == M
True
The existence of a unit element is determined dynamically::
- sage: MatrixAlgebra(ZZ,ZZ,2).one()
+ sage: MatrixAlgebra(2,ZZ,ZZ).one()
+---+---+
| 1 | 0 |
+---+---+
"""
Element = MatrixAlgebraElement
- def __init__(self, entry_algebra, scalars, n, prefix="A", **kwargs):
+ def __init__(self, n, entry_algebra, scalars, prefix="A", **kwargs):
category = MagmaticAlgebras(scalars).FiniteDimensional()
category = category.WithBasis()
sage: e = O.gens()
sage: e[2]*e[1]
-e3
- sage: A = MatrixAlgebra(O,QQ,2)
+ sage: A = MatrixAlgebra(2,O,QQ)
sage: A.product_on_basis( (0,0,e[2]), (0,0,e[1]) )
+-----+---+
| -e3 | 0 |
EXAMPLES::
- sage: A = MatrixAlgebra(QQbar, ZZ, 2)
+ sage: A = MatrixAlgebra(2, QQbar, ZZ)
sage: A.from_list([[0,I],[-I,0]])
+----+---+
| 0 | I |