EXAMPLES::
sage: J = RealSymmetricEJA(3)
- sage: x = sum( i*J.gens()[i] for i in range(6) )
- sage: basis = tuple( x^k for k in range(J.rank()) )
- sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J,basis)
- sage: [ K(x^k) for k in range(J.rank()) ]
- [f0, f1, f2]
+ sage: X = matrix(QQ, [ [0,0,1],
+ ....: [0,1,0],
+ ....: [1,0,0] ])
+ sage: x = J(X)
+ sage: basis = ( x, x^2 ) # x^2 is the identity matrix
+ sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J, basis)
+ sage: K(J.one())
+ f1
+ sage: K(J.one() + x)
+ f0 + f1
::
EXAMPLES::
sage: J = RealSymmetricEJA(3)
- sage: x = J.monomial(0) + 2*J.monomial(2) + 5*J.monomial(5)
- sage: basis = (x^0, x^1, x^2)
+ sage: E11 = matrix(QQ, [ [1,0,0],
+ ....: [0,0,0],
+ ....: [0,0,0] ])
+ sage: E22 = matrix(QQ, [ [0,0,0],
+ ....: [0,1,0],
+ ....: [0,0,0] ])
+ sage: b1 = J(E11)
+ sage: b2 = J(E22)
+ sage: basis = (b1, b2)
sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J,basis)
sage: K.vector_space()
- Vector space of degree 6 and dimension 3 over...
+ Vector space of degree 6 and dimension 2 over...
User basis matrix:
- [ 1 0 1 0 0 1]
- [ 1 0 2 0 0 5]
- [ 1 0 4 0 0 25]
- sage: (x^0).to_vector()
- (1, 0, 1, 0, 0, 1)
- sage: (x^1).to_vector()
- (1, 0, 2, 0, 0, 5)
- sage: (x^2).to_vector()
- (1, 0, 4, 0, 0, 25)
+ [1 0 0 0 0 0]
+ [0 0 1 0 0 0]
+ sage: b1.to_vector()
+ (1, 0, 0, 0, 0, 0)
+ sage: b2.to_vector()
+ (0, 0, 1, 0, 0, 0)
"""
return self._vector_space