--- /dev/null
+from sage.all import *
+from sage.symbolic.expression import is_Expression
+
+def standard_legendre_p(n, x):
+ """
+ Returns the ``n``th Legendre polynomial of the first kind over the
+ interval [-1, 1] with respect to ``x``.
+
+ INPUT:
+
+ * ``n`` -- The index of the polynomial.
+
+ * ``x`` -- Either the variable to use as the independent
+ variable in the polynomial, or a point at which to evaluate
+ the polynomial.
+
+ OUTPUT:
+
+ If ``x`` is a variable, a polynomial (symbolic expression) will be
+ returned. Otherwise, the value of the ``n``th polynomial at ``x``
+ will be returned.
+
+ TESTS:
+
+ We should agree with Maxima for all `n`::
+
+ sage: eq = lambda k: bool(standard_legendre_p(k,x) == legendre_P(k,x))
+ sage: all([eq(k) for k in range(0,20) ]) # long time
+ True
+
+ We can evaluate the result of the zeroth polynomial::
+
+ sage: f = standard_legendre_p(0,x)
+ sage: f(x=10)
+ 1
+
+ """
+ if not n in ZZ:
+ raise TypeError('n must be a natural number')
+
+ if n < 0:
+ raise ValueError('n must be nonnegative')
+
+ # Ensures that 1/(2**n) is not integer division.
+ n = ZZ(n)
+ dn = 1/(2**n)
+
+ def c(m):
+ return binomial(n,m)*binomial(n, n-m)
+
+ def g(m):
+ return ( ((x - 1)**(n-m)) * (x + 1)**m )
+
+ # From Abramowitz & Stegun, (22.3.2) with alpha = beta = 0.
+ P = dn * sum([ c(m)*g(m) for m in range(0,n+1) ])
+
+ # If `x` is a symbolic expression, we want to return a symbolic
+ # expression (even if that expression is e.g. `1`).
+ if is_Expression(x):
+ P = SR(P)
+
+ return P
+
+
+def legendre_p(n, x, a=-1, b=1):
+ """
+ Return the ``n``th Legendre polynomial over the interval `[a,b]`
+ with respect to the variable ``x``.
+
+ INPUT:
+
+ * ``n`` -- The index of the polynomial.
+
+ * ``x`` -- Either the variable to use as the independent
+ variable in the polynomial, or a point at which to evaluate
+ the polynomial.
+
+ * ``a`` -- The "left" endpoint of the interval. Must be a real number.
+
+ * ``b`` -- The "right" endpoint of the interval. Must be a real number.
+
+ OUTPUT:
+
+ If ``x`` is a variable, a polynomial (symbolic expression) will be
+ returned. Otherwise, the value of the ``n``th polynomial at ``x``
+ will be returned.
+
+ TESTS:
+
+ We agree with ``standard_legendre_p`` when `a=b=1`::
+
+ sage: eq = lambda k: bool(legendre_p(k,x) == standard_legendre_p(k,x))
+ sage: all([ eq(k) for k in range(0, 20) ]) # long time
+ True
+
+ We should have |P(a)| = |P(b)| = 1 for all a,b.
+
+ sage: a = QQ.random_element()
+ sage: b = QQ.random_element()
+ sage: k = ZZ.random_element(20)
+ sage: P = legendre_p(k, x, a, b)
+ sage: bool(abs(P(x=a)) == 1)
+ True
+ sage: bool(abs(P(x=b)) == 1)
+ True
+
+ """
+ if not (a in RR and b in RR):
+ raise TypeError('both `a` and `b` must be a real numbers')
+
+ a = RR(a)
+ b = RR(b)
+ t = SR.symbol('t')
+ P = standard_legendre_p(n, t)
+
+ # This is an affine map from [a,b] into [-1,1] and so preserves
+ # orthogonality. If we define this with 'def' instead of a lambda,
+ # Python segfaults as we evaluate P.
+ phi = lambda y: (2 / (b-a))*y + 1 - (2*b)/(b-a)
+
+ P_tilde = P(t = phi(x))
+
+ return P_tilde