# First compute the vector subspace spanned by the powers of
# the given element.
- superalgebra_basis = [self._superalgebra.one()]
+ powers = [ elt**k for k in range(V.dimension()) ]
+ power_vectors = [ p.to_vector() for p in powers ]
+
+ # Figure out which powers form a linearly-independent set.
+ ind_rows = matrix(field, power_vectors).pivot_rows()
+
+ # Pick those out of the list of all powers.
+ superalgebra_basis = tuple(map(powers.__getitem__, ind_rows))
+
# If our superalgebra is a subalgebra of something else, then
- # superalgebra.one().to_vector() won't have the right
- # coordinates unless we use V.from_vector() below.
- basis_vectors = [V.from_vector(self._superalgebra.one().to_vector())]
- W = V.span_of_basis(basis_vectors)
- for exponent in range(1, V.dimension()):
- new_power = elt**exponent
- basis_vectors.append( V.from_vector(new_power.to_vector()) )
- try:
- W = V.span_of_basis(basis_vectors)
- superalgebra_basis.append( new_power )
- except ValueError:
- # Vectors weren't independent; bail and keep the
- # last subspace that worked.
- break
-
- # Make the basis hashable for UniqueRepresentation.
- superalgebra_basis = tuple(superalgebra_basis)
+ # these vectors won't have the right coordinates for
+ # V.span_of_basis() unless we use V.from_vector() on them.
+ basis_vectors = map(power_vectors.__getitem__, ind_rows)
+ W = V.span_of_basis( V.from_vector(v) for v in basis_vectors )
# Now figure out the entries of the right-multiplication
# matrix for the successive basis elements b0, b1,... of