# we want the negative of THAT for the trace.
return -p(*self.to_vector())
+ def operator_inner_product(self, other):
+ r"""
+ Return the operator inner product of myself and ``other``.
+
+ The "operator inner product," whose name is not standard, is
+ defined be the usual linear-algebraic trace of the
+ ``(x*y).operator()``.
+
+ Proposition III.1.5 in Faraut and Korányi shows that on any
+ Euclidean Jordan algebra, this is another associative inner
+ product under which the cone of squares is symmetric.
+
+ This *probably* works even if the basis hasn't been
+ orthonormalized because the eigenvalues of the corresponding
+ matrix don't change when the basis does (they're preserved by
+ any similarity transformation).
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+ ....: RealSymmetricEJA,
+ ....: ComplexHermitianEJA,
+ ....: random_eja)
+
+ EXAMPLES:
+
+ Proposition III.4.2 of Faraut and Korányi shows that on a
+ simple algebra of rank `r` and dimension `n`, this inner
+ product is `n/r` times the canonical
+ :meth:`trace_inner_product`::
+
+ sage: J = JordanSpinEJA(4, field=QQ)
+ sage: x,y = J.random_elements(2)
+ sage: n = J.dimension()
+ sage: r = J.rank()
+ sage: actual = x.operator_inner_product(y)
+ sage: expected = (n/r)*x.trace_inner_product(y)
+ sage: actual == expected
+ True
+
+ ::
+
+ sage: J = RealSymmetricEJA(3)
+ sage: x,y = J.random_elements(2)
+ sage: n = J.dimension()
+ sage: r = J.rank()
+ sage: actual = x.operator_inner_product(y)
+ sage: expected = (n/r)*x.trace_inner_product(y)
+ sage: actual == expected
+ True
+
+ ::
+
+ sage: J = ComplexHermitianEJA(3, field=QQ, orthonormalize=False)
+ sage: x,y = J.random_elements(2)
+ sage: n = J.dimension()
+ sage: r = J.rank()
+ sage: actual = x.operator_inner_product(y)
+ sage: expected = (n/r)*x.trace_inner_product(y)
+ sage: actual == expected
+ True
+
+ TESTS:
+
+ The operator inner product is commutative, bilinear, and
+ associative::
+
+ sage: J = random_eja()
+ sage: x,y,z = J.random_elements(3)
+ sage: # commutative
+ sage: x.operator_inner_product(y) == y.operator_inner_product(x)
+ True
+ sage: # bilinear
+ sage: a = J.base_ring().random_element()
+ sage: actual = (a*(x+z)).operator_inner_product(y)
+ sage: expected = ( a*x.operator_inner_product(y) +
+ ....: a*z.operator_inner_product(y) )
+ sage: actual == expected
+ True
+ sage: actual = x.operator_inner_product(a*(y+z))
+ sage: expected = ( a*x.operator_inner_product(y) +
+ ....: a*x.operator_inner_product(z) )
+ sage: actual == expected
+ True
+ sage: # associative
+ sage: actual = (x*y).operator_inner_product(z)
+ sage: expected = y.operator_inner_product(x*z)
+ sage: actual == expected
+ True
+
+ """
+ if not other in self.parent():
+ raise TypeError("'other' must live in the same algebra")
+
+ return (self*other).operator().matrix().trace()
+
def trace_inner_product(self, other):
"""