]> gitweb.michael.orlitzky.com - dunshire.git/commitdiff
Transpose the input matrix "L" by default and document that fact.
authorMichael Orlitzky <michael@orlitzky.com>
Mon, 10 Oct 2016 02:05:07 +0000 (22:05 -0400)
committerMichael Orlitzky <michael@orlitzky.com>
Mon, 10 Oct 2016 02:36:20 +0000 (22:36 -0400)
src/dunshire/symmetric_linear_game.py

index 968d9ca630c0af2fa15e780747785e9705f82ddc..857b06447455222995220646b9fdfa56423c84d6 100644 (file)
@@ -106,22 +106,106 @@ class SymmetricLinearGame:
         """
         INPUT:
 
-          - ``L`` -- an n-by-b matrix represented as a list of lists
-             of real numbers.
+          - ``L`` -- an square matrix represented as a list of lists
+             of real numbers. ``L`` itself is interpreted as a list of
+             ROWS, which agrees with (for example) SageMath and NumPy,
+             but not with CVXOPT (whose matrix constructor accepts a
+             list of columns).
 
           - ``K`` -- a SymmetricCone instance.
 
-          - ``e1`` -- the interior point of ``K`` belonging to player one,
-                      as a column vector.
+          - ``e1`` -- the interior point of ``K`` belonging to player one;
+            it can be of any enumerable type having the correct length.
 
-          - ``e2`` -- the interior point of ``K`` belonging to player two,
-                      as a column vector.
+          - ``e2`` -- the interior point of ``K`` belonging to player two;
+            it can be of any enumerable type having the correct length.
 
+        EXAMPLES:
+
+        Lists can (and probably should) be used for every argument:
+
+            >>> from cones import NonnegativeOrthant
+            >>> K = NonnegativeOrthant(2)
+            >>> L = [[1,0],[0,1]]
+            >>> e1 = [1,1]
+            >>> e2 = [1,1]
+            >>> G = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(G)
+            The linear game (L, K, e1, e2) where
+              L = [ 1  0]
+                  [ 0  1],
+              K = Nonnegative orthant in the real 2-space,
+              e1 = [ 1]
+                   [ 1],
+              e2 = [ 1]
+                   [ 1].
+
+        The points ``e1`` and ``e2`` can also be passed as some other
+        enumerable type (of the correct length) without much harm, since
+        there is no row/column ambiguity:
+
+            >>> import cvxopt
+            >>> import numpy
+            >>> from cones import NonnegativeOrthant
+            >>> K = NonnegativeOrthant(2)
+            >>> L = [[1,0],[0,1]]
+            >>> e1 = cvxopt.matrix([1,1])
+            >>> e2 = numpy.matrix([1,1])
+            >>> G = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(G)
+            The linear game (L, K, e1, e2) where
+              L = [ 1  0]
+                  [ 0  1],
+              K = Nonnegative orthant in the real 2-space,
+              e1 = [ 1]
+                   [ 1],
+              e2 = [ 1]
+                   [ 1].
+
+        However, ``L`` will always be intepreted as a list of rows, even
+        if it is passed as a ``cvxopt.base.matrix`` which is otherwise
+        indexed by columns:
+
+            >>> import cvxopt
+            >>> from cones import NonnegativeOrthant
+            >>> K = NonnegativeOrthant(2)
+            >>> L = [[1,2],[3,4]]
+            >>> e1 = [1,1]
+            >>> e2 = e1
+            >>> G = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(G)
+            The linear game (L, K, e1, e2) where
+              L = [ 1  2]
+                  [ 3  4],
+              K = Nonnegative orthant in the real 2-space,
+              e1 = [ 1]
+                   [ 1],
+              e2 = [ 1]
+                   [ 1].
+            >>> L = cvxopt.matrix(L)
+            >>> print(L)
+            [ 1  3]
+            [ 2  4]
+            <BLANKLINE>
+            >>> G = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(G)
+            The linear game (L, K, e1, e2) where
+              L = [ 1  2]
+                  [ 3  4],
+              K = Nonnegative orthant in the real 2-space,
+              e1 = [ 1]
+                   [ 1],
+              e2 = [ 1]
+                   [ 1].
         """
         self._K = K
         self._e1 = matrix(e1, (K.dimension(), 1))
         self._e2 = matrix(e2, (K.dimension(), 1))
-        self._L = matrix(L, (K.dimension(), K.dimension()))
+
+        # Our input ``L`` is indexed by rows but CVXOPT matrices are
+        # indexed by columns, so we need to transpose the input before
+        # feeding it to CVXOPT.
+        self._L = matrix(L, (K.dimension(), K.dimension())).trans()
 
         if not K.contains_strict(self._e1):
             raise ValueError('the point e1 must lie in the interior of K')
@@ -137,7 +221,7 @@ class SymmetricLinearGame:
 
             >>> from cones import NonnegativeOrthant
             >>> K = NonnegativeOrthant(3)
-            >>> L = [[1,-1,-12],[-5,2,-15],[-15,-3,1]]
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
             >>> e1 = [1,1,1]
             >>> e2 = [1,2,3]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
@@ -160,10 +244,10 @@ class SymmetricLinearGame:
               '  K = {!s},\n' \
               '  e1 = {:s},\n' \
               '  e2 = {:s}.'
-        L_str = '\n      '.join(str(self._L).splitlines())
-        e1_str = '\n       '.join(str(self._e1).splitlines())
-        e2_str = '\n       '.join(str(self._e2).splitlines())
-        return tpl.format(L_str, str(self._K), e1_str, e2_str)
+        indented_L = '\n      '.join(str(self._L).splitlines())
+        indented_e1 = '\n       '.join(str(self._e1).splitlines())
+        indented_e2 = '\n       '.join(str(self._e2).splitlines())
+        return tpl.format(indented_L, str(self._K), indented_e1, indented_e2)
 
 
     def solution(self):
@@ -186,7 +270,7 @@ class SymmetricLinearGame:
 
             >>> from cones import NonnegativeOrthant
             >>> K = NonnegativeOrthant(3)
-            >>> L = [[1,-1,-12],[-5,2,-15],[-15,-3,1]]
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
             >>> e1 = [1,1,1]
             >>> e2 = [1,1,1]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
@@ -277,7 +361,7 @@ class SymmetricLinearGame:
 
             >>> from cones import NonnegativeOrthant
             >>> K = NonnegativeOrthant(3)
-            >>> L = [[1,-1,-12],[-5,2,-15],[-15,-3,1]]
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
             >>> e1 = [1,1,1]
             >>> e2 = [1,2,3]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
@@ -295,7 +379,7 @@ class SymmetricLinearGame:
                    [ 1].
 
         """
-        return SymmetricLinearGame(self._L.trans(),
+        return SymmetricLinearGame(self._L, # It will be transposed in __init__().
                                    self._K, # Since "K" is symmetric.
                                    self._e2,
                                    self._e1)