"""
INPUT:
- - ``L`` -- an n-by-b matrix represented as a list of lists
- of real numbers.
+ - ``L`` -- an square matrix represented as a list of lists
+ of real numbers. ``L`` itself is interpreted as a list of
+ ROWS, which agrees with (for example) SageMath and NumPy,
+ but not with CVXOPT (whose matrix constructor accepts a
+ list of columns).
- ``K`` -- a SymmetricCone instance.
- - ``e1`` -- the interior point of ``K`` belonging to player one,
- as a column vector.
+ - ``e1`` -- the interior point of ``K`` belonging to player one;
+ it can be of any enumerable type having the correct length.
- - ``e2`` -- the interior point of ``K`` belonging to player two,
- as a column vector.
+ - ``e2`` -- the interior point of ``K`` belonging to player two;
+ it can be of any enumerable type having the correct length.
+ EXAMPLES:
+
+ Lists can (and probably should) be used for every argument:
+
+ >>> from cones import NonnegativeOrthant
+ >>> K = NonnegativeOrthant(2)
+ >>> L = [[1,0],[0,1]]
+ >>> e1 = [1,1]
+ >>> e2 = [1,1]
+ >>> G = SymmetricLinearGame(L, K, e1, e2)
+ >>> print(G)
+ The linear game (L, K, e1, e2) where
+ L = [ 1 0]
+ [ 0 1],
+ K = Nonnegative orthant in the real 2-space,
+ e1 = [ 1]
+ [ 1],
+ e2 = [ 1]
+ [ 1].
+
+ The points ``e1`` and ``e2`` can also be passed as some other
+ enumerable type (of the correct length) without much harm, since
+ there is no row/column ambiguity:
+
+ >>> import cvxopt
+ >>> import numpy
+ >>> from cones import NonnegativeOrthant
+ >>> K = NonnegativeOrthant(2)
+ >>> L = [[1,0],[0,1]]
+ >>> e1 = cvxopt.matrix([1,1])
+ >>> e2 = numpy.matrix([1,1])
+ >>> G = SymmetricLinearGame(L, K, e1, e2)
+ >>> print(G)
+ The linear game (L, K, e1, e2) where
+ L = [ 1 0]
+ [ 0 1],
+ K = Nonnegative orthant in the real 2-space,
+ e1 = [ 1]
+ [ 1],
+ e2 = [ 1]
+ [ 1].
+
+ However, ``L`` will always be intepreted as a list of rows, even
+ if it is passed as a ``cvxopt.base.matrix`` which is otherwise
+ indexed by columns:
+
+ >>> import cvxopt
+ >>> from cones import NonnegativeOrthant
+ >>> K = NonnegativeOrthant(2)
+ >>> L = [[1,2],[3,4]]
+ >>> e1 = [1,1]
+ >>> e2 = e1
+ >>> G = SymmetricLinearGame(L, K, e1, e2)
+ >>> print(G)
+ The linear game (L, K, e1, e2) where
+ L = [ 1 2]
+ [ 3 4],
+ K = Nonnegative orthant in the real 2-space,
+ e1 = [ 1]
+ [ 1],
+ e2 = [ 1]
+ [ 1].
+ >>> L = cvxopt.matrix(L)
+ >>> print(L)
+ [ 1 3]
+ [ 2 4]
+ <BLANKLINE>
+ >>> G = SymmetricLinearGame(L, K, e1, e2)
+ >>> print(G)
+ The linear game (L, K, e1, e2) where
+ L = [ 1 2]
+ [ 3 4],
+ K = Nonnegative orthant in the real 2-space,
+ e1 = [ 1]
+ [ 1],
+ e2 = [ 1]
+ [ 1].
"""
self._K = K
self._e1 = matrix(e1, (K.dimension(), 1))
self._e2 = matrix(e2, (K.dimension(), 1))
- self._L = matrix(L, (K.dimension(), K.dimension()))
+
+ # Our input ``L`` is indexed by rows but CVXOPT matrices are
+ # indexed by columns, so we need to transpose the input before
+ # feeding it to CVXOPT.
+ self._L = matrix(L, (K.dimension(), K.dimension())).trans()
if not K.contains_strict(self._e1):
raise ValueError('the point e1 must lie in the interior of K')
>>> from cones import NonnegativeOrthant
>>> K = NonnegativeOrthant(3)
- >>> L = [[1,-1,-12],[-5,2,-15],[-15,-3,1]]
+ >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
>>> e1 = [1,1,1]
>>> e2 = [1,2,3]
>>> SLG = SymmetricLinearGame(L, K, e1, e2)
' K = {!s},\n' \
' e1 = {:s},\n' \
' e2 = {:s}.'
- L_str = '\n '.join(str(self._L).splitlines())
- e1_str = '\n '.join(str(self._e1).splitlines())
- e2_str = '\n '.join(str(self._e2).splitlines())
- return tpl.format(L_str, str(self._K), e1_str, e2_str)
+ indented_L = '\n '.join(str(self._L).splitlines())
+ indented_e1 = '\n '.join(str(self._e1).splitlines())
+ indented_e2 = '\n '.join(str(self._e2).splitlines())
+ return tpl.format(indented_L, str(self._K), indented_e1, indented_e2)
def solution(self):
>>> from cones import NonnegativeOrthant
>>> K = NonnegativeOrthant(3)
- >>> L = [[1,-1,-12],[-5,2,-15],[-15,-3,1]]
+ >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
>>> e1 = [1,1,1]
>>> e2 = [1,1,1]
>>> SLG = SymmetricLinearGame(L, K, e1, e2)
>>> from cones import NonnegativeOrthant
>>> K = NonnegativeOrthant(3)
- >>> L = [[1,-1,-12],[-5,2,-15],[-15,-3,1]]
+ >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
>>> e1 = [1,1,1]
>>> e2 = [1,2,3]
>>> SLG = SymmetricLinearGame(L, K, e1, e2)
[ 1].
"""
- return SymmetricLinearGame(self._L.trans(),
+ return SymmetricLinearGame(self._L, # It will be transposed in __init__().
self._K, # Since "K" is symmetric.
self._e2,
self._e1)