Return the space that our matrix basis lives in as a Cartesian
product.
+ We don't simply use the ``cartesian_product()`` functor here
+ because it acts differently on SageMath MatrixSpaces and our
+ custom MatrixAlgebras, which are CombinatorialFreeModules. We
+ always want the result to be represented (and indexed) as
+ an ordered tuple.
+
SETUP::
- sage: from mjo.eja.eja_algebra import (HadamardEJA,
+ sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+ ....: HadamardEJA,
+ ....: OctonionHermitianEJA,
....: RealSymmetricEJA)
EXAMPLES::
matrices over Algebraic Real Field, Full MatrixSpace of 2
by 2 dense matrices over Algebraic Real Field)
+ ::
+
+ sage: J1 = ComplexHermitianEJA(1)
+ sage: J2 = ComplexHermitianEJA(1)
+ sage: J = cartesian_product([J1,J2])
+ sage: J.one().to_matrix()[0]
+ [1 0]
+ [0 1]
+ sage: J.one().to_matrix()[1]
+ [1 0]
+ [0 1]
+
+ ::
+
+ sage: J1 = OctonionHermitianEJA(1)
+ sage: J2 = OctonionHermitianEJA(1)
+ sage: J = cartesian_product([J1,J2])
+ sage: J.one().to_matrix()[0]
+ +----+
+ | e0 |
+ +----+
+ sage: J.one().to_matrix()[1]
+ +----+
+ | e0 |
+ +----+
+
"""
- from sage.categories.cartesian_product import cartesian_product
- return cartesian_product( [J.matrix_space()
- for J in self.cartesian_factors()] )
+ scalars = self.cartesian_factor(0).base_ring()
+
+ # This category isn't perfect, but is good enough for what we
+ # need to do.
+ cat = MagmaticAlgebras(scalars).FiniteDimensional().WithBasis()
+ cat = cat.Unital().CartesianProducts()
+ factors = tuple( J.matrix_space() for J in self.cartesian_factors() )
+
+ from sage.sets.cartesian_product import CartesianProduct
+ return CartesianProduct(factors, cat)
+
@cached_method
def cartesian_projection(self, i):