to solve a linear game.
"""
-from cvxopt import matrix, printing, solvers
+# These few are used only for tests.
+from math import sqrt
+from random import randint, uniform
from unittest import TestCase
-from cones import CartesianProduct
+# These are mostly actually needed.
+from cvxopt import matrix, printing, solvers
+from cones import CartesianProduct, IceCream, NonnegativeOrthant
from errors import GameUnsolvableException
from matrices import append_col, append_row, identity, inner_product
import options
class SymmetricLinearGameTest(TestCase):
+ """
+ Tests for the SymmetricLinearGame and Solution classes.
+ """
- def assertEqualWithinTol(self, first, second):
+ def assert_within_tol(self, first, second):
"""
Test that ``first`` and ``second`` are equal within our default
tolerance.
self.assertTrue(abs(first - second) < options.ABS_TOL)
- def test_solution_exists(self):
+ def assert_solution_exists(self, L, K, e1, e2):
"""
- Every linear game has a solution, so we should be able to solve
- every symmetric linear game. Pick some parameters randomly and
- give it a shot.
+ Given the parameters needed to construct a SymmetricLinearGame,
+ ensure that that game has a solution.
"""
- from cones import NonnegativeOrthant
- from random import randint, uniform
- ambient_dim = randint(1,10)
- K = NonnegativeOrthant(ambient_dim)
- e1 = [uniform(0.1, 10) for idx in range(ambient_dim)]
- e2 = [uniform(0.1, 10) for idx in range(ambient_dim)]
- L = [[uniform(-10, 10) for i in range(ambient_dim)]
- for j in range(ambient_dim)]
G = SymmetricLinearGame(L, K, e1, e2)
soln = G.solution()
L_matrix = matrix(L).trans()
expected = inner_product(L_matrix*soln.player1_optimal(),
soln.player2_optimal())
- self.assertEqualWithinTol(soln.game_value(), expected)
+ self.assert_within_tol(soln.game_value(), expected)
+
+ def test_solution_exists_nonnegative_orthant(self):
+ """
+ Every linear game has a solution, so we should be able to solve
+ every symmetric linear game over the NonnegativeOrthant. Pick
+ some parameters randomly and give it a shot. The resulting
+ optimal solutions should give us the optimal game value when we
+ apply the payoff operator to them.
+ """
+ ambient_dim = randint(1, 10)
+ K = NonnegativeOrthant(ambient_dim)
+ e1 = [uniform(0.1, 10) for idx in range(K.dimension())]
+ e2 = [uniform(0.1, 10) for idx in range(K.dimension())]
+ L = [[uniform(-10, 10) for i in range(K.dimension())]
+ for j in range(K.dimension())]
+ self.assert_solution_exists(L, K, e1, e2)
+
+ def test_solution_exists_ice_cream(self):
+ """
+ Like :meth:`test_solution_exists_nonnegative_orthant`, except
+ over the ice cream cone.
+ """
+ # Use a minimum dimension of two to avoid divide-by-zero in
+ # the fudge factor we make up later.
+ ambient_dim = randint(2, 10)
+ K = IceCream(ambient_dim)
+ e1 = [1]
+ e2 = [1]
+ # If we choose the rest of the components of e1,e2 randomly
+ # between 0 and 1, then the largest the squared norm of the
+ # non-height part of e1,e2 could be is the 1*(dim(K) - 1). We
+ # need to make it less than one (the height of the cone) so
+ # that the whole thing is in the cone. The norm of the
+ # non-height part is sqrt(dim(K) - 1), and we can divide by
+ # twice that.
+ fudge_factor = 1.0 / (2.0*sqrt(K.dimension() - 1.0))
+ e1 += [fudge_factor*uniform(0, 1) for idx in range(K.dimension() - 1)]
+ e2 += [fudge_factor*uniform(0, 1) for idx in range(K.dimension() - 1)]
+ L = [[uniform(-10, 10) for i in range(K.dimension())]
+ for j in range(K.dimension())]
+ self.assert_solution_exists(L, K, e1, e2)
+