return (self + (-other))
+ def is_invertible(self):
+ """
+ Return whether or not this operator is invertible.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import RealSymmetricEJA, random_eja
+
+ EXAMPLES::
+
+ sage: J = RealSymmetricEJA(2)
+ sage: x = sum(J.gens())
+ sage: x.operator().matrix()
+ [ 1 1/2 0]
+ [1/2 1 1/2]
+ [ 0 1/2 1]
+ sage: x.operator().matrix().is_invertible()
+ True
+ sage: x.operator().is_invertible()
+ True
+
+ TESTS:
+
+ The identity operator is always invertible::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: J.one().operator().is_invertible()
+ True
+
+ The zero operator is never invertible::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: J.zero().operator().is_invertible()
+ False
+
+ """
+ return self.matrix().is_invertible()
+
+
def matrix(self):
"""
Return the matrix representation of this operator with respect