]> gitweb.michael.orlitzky.com - dunshire.git/commitdiff
Add more docs for a few private methods and implement the do-over.
authorMichael Orlitzky <michael@orlitzky.com>
Thu, 3 Nov 2016 19:56:22 +0000 (15:56 -0400)
committerMichael Orlitzky <michael@orlitzky.com>
Thu, 3 Nov 2016 19:56:22 +0000 (15:56 -0400)
Some examples and return type documentation were added for the
_zero(), _A(), and _G() methods of SymmetricLinearGame. The _zero()
method was also uncached, since attempting to cache _A() and _G()
revealed that CVXOPT clobbers them. The zero vector appears safe, but
let's play it safe.

This also implements a two-stage retry for the solution of a game. Our
default tolerance is now 1e-6, but when we're trying to solve a game,
we try it with 1e7 first. If we can solve it with the stricter
tolerance, then great. If not, we use the default.

dunshire/games.py

index c2ca68ea7faee4f751410a1dbf27c31517400d9f..6480d7d31153afcc419d331e0cd416a64253a188 100644 (file)
@@ -322,8 +322,6 @@ class SymmetricLinearGame:
         if not self._e2 in K:
             raise ValueError('the point e2 must lie in the interior of K')
 
-        # Cached result of the self._zero() method.
-        self._zero_col = None
 
 
     def __str__(self):
@@ -352,11 +350,35 @@ class SymmetricLinearGame:
         Return a column of zeros that fits ``K``.
 
         This is used in our CVXOPT construction.
+
+        .. warning::
+
+            It is not safe to cache any of the matrices passed to
+            CVXOPT, because it can clobber them.
+
+        Returns
+        -------
+
+        matrix
+            A ``K.dimension()``-by-``1`` column vector of zeros.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = identity(3)
+            >>> e1 = [1,1,1]
+            >>> e2 = e1
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG._zero())
+            [0.0000000]
+            [0.0000000]
+            [0.0000000]
+            <BLANKLINE>
+
         """
-        if self._zero_col is None:
-            # Cache it, it's constant.
-            self._zero_col = matrix(0, (self._K.dimension(), 1), tc='d')
-        return self._zero_col
+        return matrix(0, (self._K.dimension(), 1), tc='d')
 
 
     def _A(self):
@@ -365,22 +387,136 @@ class SymmetricLinearGame:
 
         This matrix ``A``  appears on the right-hand side of ``Ax = b``
         in the statement of the CVXOPT conelp program.
+
+        .. warning::
+
+            It is not safe to cache any of the matrices passed to
+            CVXOPT, because it can clobber them.
+
+        Returns
+        -------
+
+        matrix
+            A ``1``-by-``(1 + K.dimension())`` row vector. Its first
+            entry is zero, and the rest are the entries of ``e2``.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,1,1],[1,1,1],[1,1,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,2,3]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG._A())
+            [0.0000000 1.0000000 2.0000000 3.0000000]
+            <BLANKLINE>
+
         """
         return matrix([0, self._e2], (1, self._K.dimension() + 1), 'd')
 
 
+
     def _G(self):
         r"""
         Return the matrix ``G`` used in our CVXOPT construction.
 
         Thus matrix ``G``that appears on the left-hand side of ``Gx + s = h``
         in the statement of the CVXOPT conelp program.
+
+        .. warning::
+
+            It is not safe to cache any of the matrices passed to
+            CVXOPT, because it can clobber them.
+
+        Returns
+        -------
+
+        matrix
+            A ``2*K.dimension()``-by-``1 + K.dimension()`` matrix.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[4,5,6],[7,8,9],[10,11,12]]
+            >>> e1 = [1,2,3]
+            >>> e2 = [1,1,1]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG._G())
+            [  0.0000000  -1.0000000   0.0000000   0.0000000]
+            [  0.0000000   0.0000000  -1.0000000   0.0000000]
+            [  0.0000000   0.0000000   0.0000000  -1.0000000]
+            [  1.0000000  -4.0000000  -5.0000000  -6.0000000]
+            [  2.0000000  -7.0000000  -8.0000000  -9.0000000]
+            [  3.0000000 -10.0000000 -11.0000000 -12.0000000]
+            <BLANKLINE>
+
         """
         I = identity(self._K.dimension())
         return append_row(append_col(self._zero(), -I),
                           append_col(self._e1, -self._L))
 
 
+    def _try_solution(self, c, h, C, b, tolerance):
+        # Actually solve the thing and obtain a dictionary describing
+        # what happened.
+        try:
+            solvers.options['show_progress'] = options.VERBOSE
+            solvers.options['abs_tol'] = tolerance
+            soln_dict = solvers.conelp(c,self._G(),h,C,self._A(),b)
+        except ValueError as e:
+            if str(e) == 'math domain error':
+                # Oops, CVXOPT tried to take the square root of a
+                # negative number. Report some details about the game
+                # rather than just the underlying CVXOPT crash.
+                raise PoorScalingException(self)
+            else:
+                raise e
+
+        # The optimal strategies are named ``p`` and ``q`` in the
+        # background documentation, and we need to extract them from
+        # the CVXOPT ``x`` and ``z`` variables. The objective values
+        # :math:`nu` and :math:`omega` can also be found in the CVXOPT
+        # ``x`` and ``y`` variables; however, they're stored
+        # conveniently as separate entries in the solution dictionary.
+        p1_value = -soln_dict['primal objective']
+        p2_value = -soln_dict['dual objective']
+        p1_optimal = soln_dict['x'][1:]
+        p2_optimal = soln_dict['z'][self._K.dimension():]
+
+        # The "status" field contains "optimal" if everything went
+        # according to plan. Other possible values are "primal
+        # infeasible", "dual infeasible", "unknown", all of which mean
+        # we didn't get a solution. The "infeasible" ones are the
+        # worst, since they indicate that CVXOPT is convinced the
+        # problem is infeasible (and that cannot happen).
+        if soln_dict['status'] in ['primal infeasible', 'dual infeasible']:
+            raise GameUnsolvableException(self, soln_dict)
+        elif soln_dict['status'] == 'unknown':
+            # When we get a status of "unknown", we may still be able
+            # to salvage a solution out of the returned
+            # dictionary. Often this is the result of numerical
+            # difficulty and we can simply check that the primal/dual
+            # objectives match (within a tolerance) and that the
+            # primal/dual optimal solutions are within the cone (to a
+            # tolerance as well).
+            #
+            # The fudge factor of two is basically unjustified, but
+            # makes intuitive sense when you imagine that the primal
+            # value could be under the true optimal by ``ABS_TOL``
+            # and the dual value could be over by the same amount.
+            #
+            if abs(p1_value - p2_value) > tolerance:
+                raise GameUnsolvableException(self, soln_dict)
+            if (p1_optimal not in self._K) or (p2_optimal not in self._K):
+                raise GameUnsolvableException(self, soln_dict)
+
+        return Solution(p1_value, p1_optimal, p2_optimal)
+
+
     def solution(self):
         """
         Solve this linear game and return a :class:`Solution`.
@@ -462,61 +598,15 @@ class SymmetricLinearGame:
         # value <c,x> in the statement of the CVXOPT conelp program.
         c = matrix([-1, self._zero()])
 
-        # Actually solve the thing and obtain a dictionary describing
-        # what happened.
         try:
-            solvers.options['show_progress'] = options.VERBOSE
-            solvers.options['abs_tol'] = options.ABS_TOL
-            soln_dict = solvers.conelp(c, self._G(), h,
-                                       C.cvxopt_dims(), self._A(), b)
-        except ValueError as e:
-            if str(e) == 'math domain error':
-                # Oops, CVXOPT tried to take the square root of a
-                # negative number. Report some details about the game
-                # rather than just the underlying CVXOPT crash.
-                raise PoorScalingException(self)
-            else:
-                raise e
-
-        # The optimal strategies are named ``p`` and ``q`` in the
-        # background documentation, and we need to extract them from
-        # the CVXOPT ``x`` and ``z`` variables. The objective values
-        # :math:`nu` and :math:`omega` can also be found in the CVXOPT
-        # ``x`` and ``y`` variables; however, they're stored
-        # conveniently as separate entries in the solution dictionary.
-        p1_value = -soln_dict['primal objective']
-        p2_value = -soln_dict['dual objective']
-        p1_optimal = soln_dict['x'][1:]
-        p2_optimal = soln_dict['z'][self._K.dimension():]
-
-        # The "status" field contains "optimal" if everything went
-        # according to plan. Other possible values are "primal
-        # infeasible", "dual infeasible", "unknown", all of which mean
-        # we didn't get a solution. The "infeasible" ones are the
-        # worst, since they indicate that CVXOPT is convinced the
-        # problem is infeasible (and that cannot happen).
-        if soln_dict['status'] in ['primal infeasible', 'dual infeasible']:
-            raise GameUnsolvableException(self, soln_dict)
-        elif soln_dict['status'] == 'unknown':
-            # When we get a status of "unknown", we may still be able
-            # to salvage a solution out of the returned
-            # dictionary. Often this is the result of numerical
-            # difficulty and we can simply check that the primal/dual
-            # objectives match (within a tolerance) and that the
-            # primal/dual optimal solutions are within the cone (to a
-            # tolerance as well).
-            #
-            # The fudge factor of two is basically unjustified, but
-            # makes intuitive sense when you imagine that the primal
-            # value could be under the true optimal by ``ABS_TOL``
-            # and the dual value could be over by the same amount.
-            #
-            if abs(p1_value - p2_value) > options.ABS_TOL:
-                raise GameUnsolvableException(self, soln_dict)
-            if (p1_optimal not in self._K) or (p2_optimal not in self._K):
-                raise GameUnsolvableException(self, soln_dict)
-
-        return Solution(p1_value, p1_optimal, p2_optimal)
+            # First try with a stricter tolerance. Who knows, it might work.
+            return self._try_solution(c, h, C.cvxopt_dims(), b,
+                                      tolerance = options.ABS_TOL / 10)
+
+        except (PoorScalingException, GameUnsolvableException):
+            # Ok, that didn't work. Let's try it with the default.
+            return self._try_solution(c, h, C.cvxopt_dims(), b,
+                                      tolerance = options.ABS_TOL)
 
 
     def condition(self):