All imports from mjo.cone modules.
"""
-from mjo.cone.cone import *
from mjo.cone.completely_positive import *
from mjo.cone.doubly_nonnegative import *
from mjo.cone.faces import *
+++ /dev/null
-r"""
-Matrices aren't vectors in Sage, so these ugly little functions
-allow you to create some important cones of matrices quickly and
-easily, without the boilerplate.
-"""
-
-from sage.geometry.toric_lattice import ToricLattice
-
-def LL_cone(K):
- r"""
- The cone of Lyapunov-like operators on ``K``.
- """
- gens = K.lyapunov_like_basis()
- L = ToricLattice(K.lattice_dim()**2)
- return Cone(( g.list() for g in gens ), lattice=L, check=False)
-
-def Sigma_cone(K):
- r"""
- The cone of cross-positive operators on ``K``.
- """
- gens = K.cross_positive_operators_gens()
- L = ToricLattice(K.lattice_dim()**2)
- return Cone(( g.list() for g in gens ), lattice=L, check=False)
-
-def Z_cone(K):
- r"""
- The cone of Z-operators on ``K``.
- """
- gens = K.Z_operators_gens()
- L = ToricLattice(K.lattice_dim()**2)
- return Cone(( g.list() for g in gens ), lattice=L, check=False)
-
-def pi_cone(K1, K2=None):
- r"""
- The cone of positice operators on ``K``.
- """
- if K2 is None:
- K2 = K1
- gens = K1.positive_operators_gens(K2)
- L = ToricLattice(K1.lattice_dim()*K2.lattice_dim())
- return Cone(( g.list() for g in gens ), lattice=L, check=False)