]> gitweb.michael.orlitzky.com - sage.d.git/commitdiff
mjo/polynomial.py: don't import from sage.all
authorMichael Orlitzky <michael@orlitzky.com>
Fri, 22 Nov 2024 20:12:00 +0000 (15:12 -0500)
committerMichael Orlitzky <michael@orlitzky.com>
Fri, 22 Nov 2024 20:12:00 +0000 (15:12 -0500)
mjo/polynomial.py

index e50fece270e78be01904872cbd3d3571698325ea..4f215ab6c59cc7259cea551e0344e12beabb1eec 100644 (file)
@@ -1,5 +1,3 @@
-from sage.all import *
-
 def multidiv(f, gs):
     r"""
     Divide the multivariate polynomial ``f`` by the ordered list of
@@ -139,8 +137,7 @@ def multidiv(f, gs):
         sage: x,y,z = R.gens()
         sage: s = ZZ.random_element(1,5).abs()
         sage: gs = [ R.random_element() for idx in range(s) ]
-        sage: # hack for SageMath Trac #28855
-        sage: f = R(R.random_element(ZZ.random_element(10).abs()))
+        sage: f = R.random_element(ZZ.random_element(10).abs())
         sage: (qs, r) = multidiv(f,gs)
         sage: r != 0 or f in R.ideal(gs)
         True
@@ -152,8 +149,7 @@ def multidiv(f, gs):
         sage: R = PolynomialRing(QQ, 'x,y,z')
         sage: s = ZZ.random_element(1,5).abs()
         sage: gs = [ R.random_element() for idx in range(s) ]
-        sage: # hack for SageMath Trac #28855
-        sage: f = R(R.random_element(ZZ.random_element(10).abs()))
+        sage: f = R.random_element(ZZ.random_element(10).abs())
         sage: (qs, r) = multidiv(f,gs)
         sage: r + sum( qs[i]*gs[i] for i in range(len(gs)) ) == f
         True
@@ -168,8 +164,7 @@ def multidiv(f, gs):
         sage: R = PolynomialRing(QQ,'x,y,z')
         sage: gs = R.random_element().monomials()
         sage: I = R.ideal(gs)
-        sage: # hack for SageMath Trac #28855
-        sage: f = R(I.random_element(ZZ.random_element(5).abs()))
+        sage: f = I.random_element(ZZ.random_element(5).abs())
         sage: (qs, r) = multidiv(f, gs)
         sage: r.is_zero()
         True
@@ -184,7 +179,7 @@ def multidiv(f, gs):
 
     while p != R.zero():
         for i in range(0,s):
-            division_occurred = false
+            division_occurred = False
             # If gs[i].lt() divides p.lt(), then this remainder will
             # be zero and the quotient will be in R (and not the
             # fraction ring, which is important).
@@ -192,7 +187,7 @@ def multidiv(f, gs):
             if lt_r.is_zero():
                 qs[i] += factor
                 p -= factor*gs[i]
-                division_occurred = true
+                division_occurred = True
                 break
 
         if not division_occurred: