The function $f$ applied to $x$ is $f\of{x}$, and the restriction
of $f$ to a subset $X$ of its domain is $\restrict{f}{X}$. We can
group terms like $a + \qty{b - c}$ or $a + \qty{b - \sqty{c -
- d}}$. The tuples go up to seven, for now:
+ d}}$. The tuples go up to seven, for now, and then we give up
+ and use the general construct:
%
\begin{itemize}
\begin{item}
\begin{item}
Septuple: $\septuple{1}{2}{3}{4}{5}{6}{7}$.
\end{item}
+ \begin{item}
+ Tuple: $\tuple{1,2,\ldots,8675309}$.
+ \end{item}
\end{itemize}
%
The factorial of the number $10$ is $\factorial{10}$, and the
% A seven-tuple of things.
\newcommand*{\septuple}[7]{ \left({#1},{#2},{#3},{#4},{#5},{#6},{#7}\right) }
+% A free-form tuple of things. Useful for when the exact number is not
+% known, such as when \ldots will be stuck in the middle of the list,
+% and when you don't want to think in column-vector terms, e.g. with
+% elements of an abstract Cartesian product space.
+\newcommand*{\tuple}[1]{ \left({#1}\right) }
+
% The "least common multiple of" function. Takes a nonempty set of
% things that can be multiplied and ordered as its argument. Name
% chosen for synergy with \gcd, which *does* exist already.