from mjo.eja.eja_algebra import FiniteDimensionalEuclideanJordanAlgebra
from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
-from mjo.eja.eja_utils import gram_schmidt
class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensionalEuclideanJordanAlgebraElement):
"""
# because it's the maximal set of powers that could possibly
# be independent (by a dimension argument).
powers = [ elt**k for k in range(V.dimension()) ]
+ power_vectors = [ p.to_vector() for p in powers ]
+ P = matrix(field, power_vectors)
if orthonormalize_basis == False:
# In this case, we just need to figure out which elements
# of the "powers" list are redundant... First compute the
# vector subspace spanned by the powers of the given
# element.
- power_vectors = [ p.to_vector() for p in powers ]
# Figure out which powers form a linearly-independent set.
- ind_rows = matrix(field, power_vectors).pivot_rows()
+ ind_rows = P.pivot_rows()
# Pick those out of the list of all powers.
superalgebra_basis = tuple(map(powers.__getitem__, ind_rows))
else:
# If we're going to orthonormalize the basis anyway, we
# might as well just do Gram-Schmidt on the whole list of
- # powers. The redundant ones will get zero'd out.
- superalgebra_basis = gram_schmidt(powers)
- basis_vectors = [ b.to_vector() for b in superalgebra_basis ]
+ # powers. The redundant ones will get zero'd out. If this
+ # looks like a roundabout way to orthonormalize, it is.
+ # But converting everything from algebra elements to vectors
+ # to matrices and then back again turns out to be about
+ # as fast as reimplementing our own Gram-Schmidt that
+ # works in an EJA.
+ G,_ = P.gram_schmidt(orthonormal=True)
+ basis_vectors = [ g for g in G.rows() if not g.is_zero() ]
+ superalgebra_basis = [ self._superalgebra.from_vector(b)
+ for b in basis_vectors ]
W = V.span_of_basis( V.from_vector(v) for v in basis_vectors )
n = len(superalgebra_basis)
from sage.modules.free_module_element import vector
-from sage.rings.number_field.number_field import NumberField
-from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
-from sage.rings.real_lazy import RLF
def _mat2vec(m):
return vector(m.base_ring(), m.list())
-
-def gram_schmidt(v):
- """
- Perform Gram-Schmidt on the list ``v`` which are assumed to be
- vectors over the same base ring. Returns a list of orthonormalized
- vectors over the smallest extention ring containing the necessary
- roots.
-
- SETUP::
-
- sage: from mjo.eja.eja_utils import gram_schmidt
-
- EXAMPLES::
-
- sage: v1 = vector(QQ,(1,2,3))
- sage: v2 = vector(QQ,(1,-1,6))
- sage: v3 = vector(QQ,(2,1,-1))
- sage: v = [v1,v2,v3]
- sage: u = gram_schmidt(v)
- sage: all( u_i.inner_product(u_i).sqrt() == 1 for u_i in u )
- True
- sage: bool(u[0].inner_product(u[1]) == 0)
- True
- sage: bool(u[0].inner_product(u[2]) == 0)
- True
- sage: bool(u[1].inner_product(u[2]) == 0)
- True
-
- TESTS:
-
- Ensure that zero vectors don't get in the way::
-
- sage: v1 = vector(QQ,(1,2,3))
- sage: v2 = vector(QQ,(1,-1,6))
- sage: v3 = vector(QQ,(0,0,0))
- sage: v = [v1,v2,v3]
- sage: len(gram_schmidt(v)) == 2
- True
-
- """
- def proj(x,y):
- return (y.inner_product(x)/x.inner_product(x))*x
-
- v = list(v) # make a copy, don't clobber the input
-
- # Drop all zero vectors before we start.
- v = [ v_i for v_i in v if not v_i.is_zero() ]
-
- if len(v) == 0:
- # cool
- return v
-
- R = v[0].base_ring()
-
- # First orthogonalize...
- for i in xrange(1,len(v)):
- # Earlier vectors can be made into zero so we have to ignore them.
- v[i] -= sum( proj(v[j],v[i]) for j in range(i) if not v[j].is_zero() )
-
- # And now drop all zero vectors again if they were "orthogonalized out."
- v = [ v_i for v_i in v if not v_i.is_zero() ]
-
- # Just normalize. If the algebra is missing the roots, we can't add
- # them here because then our subalgebra would have a bigger field
- # than the superalgebra.
- for i in xrange(len(v)):
- v[i] = v[i] / v[i].norm()
-
- return v