from sage.matrix.constructor import matrix
from sage.matrix.matrix_space import MatrixSpace
from sage.misc.cachefunc import cached_method
-from sage.misc.lazy_import import lazy_import
from sage.misc.table import table
from sage.modules.free_module import FreeModule, VectorSpace
from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
PolynomialRing,
QuadraticField)
from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
-lazy_import('mjo.eja.eja_subalgebra',
- 'FiniteDimensionalEuclideanJordanSubalgebra')
from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
from mjo.eja.eja_utils import _mat2vec
if not c.is_idempotent():
raise ValueError("element is not idempotent: %s" % c)
+ from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
+
# Default these to what they should be if they turn out to be
# trivial, because eigenspaces_left() won't return eigenvalues
# corresponding to trivial spaces (e.g. it returns only the
from sage.modules.free_module import VectorSpace
from sage.modules.with_basis.indexed_element import IndexedFreeModuleElement
-# TODO: make this unnecessary somehow.
-from sage.misc.lazy_import import lazy_import
-lazy_import('mjo.eja.eja_algebra', 'FiniteDimensionalEuclideanJordanAlgebra')
-lazy_import('mjo.eja.eja_element_subalgebra',
- 'FiniteDimensionalEuclideanJordanElementSubalgebra')
from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
from mjo.eja.eja_utils import _mat2vec
True
"""
+ from mjo.eja.eja_element_subalgebra import FiniteDimensionalEuclideanJordanElementSubalgebra
return FiniteDimensionalEuclideanJordanElementSubalgebra(self, orthonormalize_basis)