def product_on_basis(self, i, j):
+ r"""
+ Returns the Jordan product of the `i` and `j`th basis elements.
+
+ This completely defines the Jordan product on the algebra, and
+ is used direclty by our superclass machinery to implement
+ :meth:`product`.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import random_eja
+
+ TESTS::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: n = J.dimension()
+ sage: ei = J.zero()
+ sage: ej = J.zero()
+ sage: ei_ej = J.zero()*J.zero()
+ sage: if n > 0:
+ ....: i = ZZ.random_element(n)
+ ....: j = ZZ.random_element(n)
+ ....: ei = J.gens()[i]
+ ....: ej = J.gens()[j]
+ ....: ei_ej = J.product_on_basis(i,j)
+ sage: ei*ej == ei_ej
+ True
+
+ """
# We only stored the lower-triangular portion of the
# multiplication table.
if j <= i: