"""
from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
-from sage.categories.finite_dimensional_algebras_with_basis import FiniteDimensionalAlgebrasWithBasis
+from sage.categories.magmatic_algebras import MagmaticAlgebras
from sage.combinat.free_module import CombinatorialFreeModule
from sage.matrix.constructor import matrix
from sage.misc.cachefunc import cached_method
from sage.misc.prandom import choice
+from sage.misc.table import table
from sage.modules.free_module import VectorSpace
from sage.rings.integer_ring import ZZ
from sage.rings.number_field.number_field import QuadraticField
from mjo.eja.eja_utils import _mat2vec
class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
+ # This is an ugly hack needed to prevent the category framework
+ # from implementing a coercion from our base ring (e.g. the
+ # rationals) into the algebra. First of all -- such a coercion is
+ # nonsense to begin with. But more importantly, it tries to do so
+ # in the category of rings, and since our algebras aren't
+ # associative they generally won't be rings.
+ _no_generic_basering_coercion = True
+
def __init__(self,
field,
mult_table,
self._natural_basis = natural_basis
if category is None:
- category = FiniteDimensionalAlgebrasWithBasis(field).Unital()
+ category = MagmaticAlgebras(field).FiniteDimensional()
+ category = category.WithBasis().Unital()
+
fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
fda.__init__(field,
range(len(mult_table)),
True
"""
+ if elt == 0:
+ # The superclass implementation of random_element()
+ # needs to be able to coerce "0" into the algebra.
+ return self.zero()
+
natural_basis = self.natural_basis()
if elt not in natural_basis[0].matrix_space():
raise ValueError("not a naturally-represented algebra element")
def multiplication_table(self):
"""
- Return a readable matrix representation of this algebra's
- multiplication table. The (i,j)th entry in the matrix contains
- the product of the ith basis element with the jth.
-
- This is not extraordinarily useful, but it overrides a superclass
- method that would otherwise just crash and complain about the
- algebra being infinite.
+ Return a visual representation of this algebra's multiplication
+ table (on basis elements).
SETUP::
- sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
- ....: RealCartesianProductEJA)
+ sage: from mjo.eja.eja_algebra import JordanSpinEJA
EXAMPLES::
- sage: J = RealCartesianProductEJA(3)
- sage: J.multiplication_table()
- [e0 0 0]
- [ 0 e1 0]
- [ 0 0 e2]
-
- ::
-
- sage: J = JordanSpinEJA(3)
+ sage: J = JordanSpinEJA(4)
sage: J.multiplication_table()
- [e0 e1 e2]
- [e1 e0 0]
- [e2 0 e0]
+ +----++----+----+----+----+
+ | * || e0 | e1 | e2 | e3 |
+ +====++====+====+====+====+
+ | e0 || e0 | e1 | e2 | e3 |
+ +----++----+----+----+----+
+ | e1 || e1 | e0 | 0 | 0 |
+ +----++----+----+----+----+
+ | e2 || e2 | 0 | e0 | 0 |
+ +----++----+----+----+----+
+ | e3 || e3 | 0 | 0 | e0 |
+ +----++----+----+----+----+
"""
- return matrix(self._multiplication_table)
+ M = list(self._multiplication_table) # copy
+ for i in range(len(M)):
+ # M had better be "square"
+ M[i] = [self.monomial(i)] + M[i]
+ M = [["*"] + list(self.gens())] + M
+ return table(M, header_row=True, header_column=True, frame=True)
def natural_basis(self):