1. Move the set operations from mjo-common and mjo-misc into mjo-set.
-2. Add a \powerset command, once I decide whether to use \mathcal{P}
- or 2^{X} for the notation.
-
-3. Having S^{n} or H^{n} reduce to simply "S" or "H" in the case where
+2. Having S^{n} or H^{n} reduce to simply "S" or "H" in the case where
n=1 doesn't make sense.
\begin{equation*}
\directsummany{k=1}{\infty}{V_{k}} \ne \cartprodmany{k=1}{\infty}{V_{k}}.
\end{equation*}
+ %
Here are a few common tuple spaces that should not have a
superscript when that superscript would be one: $\Nn[1]$,
$\Zn[1]$, $\Qn[1]$, $\Rn[1]$, $\Cn[1]$. However, if the
\begin{equation*}
\unionmany{k=1}{\infty}{A_{k}} = \intersectmany{k=1}{\infty}{B_{k}}
\end{equation*}
-
- Finally, we have the four standard types of intervals in $\Rn[1]$,
+ %
+ The powerset of $X$ displays nicely, as $\powerset{X}$. Finally,
+ we have the four standard types of intervals in $\Rn[1]$,
%
\begin{align*}
\intervaloo{a}{b} &= \setc{ x \in \Rn[1]}{ a < x < b },\\
\def\havemjocommon{1}
-\ifx\mathbb\undefined
- \usepackage{amsfonts}
-\fi
+\input{mjo-font} % amsfonts and \mathpzc
\ifx\bigtimes\undefined
\usepackage{mathtools}
\newcommand*{\directsummany}[3]{ \binopmany{\bigoplus}{#1}{#2}{#3} }
\newcommand*{\unionmany}[3]{ \binopmany{\bigcup}{#1}{#2}{#3} }
+\newcommand*{\powerset}[1]{\mathpzc{P}\of{{#1}}}
+\ifdefined\newglossaryentry
+ \newglossaryentry{powerset}{
+ name={\ensuremath{\powerset{X}}},
+ description={the ``powerset,'' or set of all subsets of $X$},
+ sort=p
+ }
+\fi
% The four standard (UNLESS YOU'RE FRENCH) types of intervals along
% the real line.