from sage.misc.cachefunc import cached_method
from sage.misc.prandom import choice
from sage.misc.table import table
-from sage.modules.free_module import VectorSpace
+from sage.modules.free_module import FreeModule, VectorSpace
from sage.rings.integer_ring import ZZ
from sage.rings.number_field.number_field import QuadraticField
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
determinant).
"""
z = self._a_regular_element()
- V = self.vector_space()
- V1 = V.span_of_basis( (z**k).to_vector() for k in range(self.rank()) )
+ # Don't use the parent vector space directly here in case this
+ # happens to be a subalgebra. In that case, we would be e.g.
+ # two-dimensional but span_of_basis() would expect three
+ # coordinates.
+ V = VectorSpace(self.base_ring(), self.vector_space().dimension())
+ basis = [ (z**k).to_vector() for k in range(self.rank()) ]
+ V1 = V.span_of_basis( basis )
b = (V1.basis() + V1.complement().basis())
return V.span_of_basis(b)
# have multivatiate polynomial entries.
names = tuple('X' + str(i) for i in range(1,n+1))
R = PolynomialRing(self.base_ring(), names)
- V = self.vector_space().change_ring(R)
+
+ # Using change_ring() on the parent's vector space doesn't work
+ # here because, in a subalgebra, that vector space has a basis
+ # and change_ring() tries to bring the basis along with it. And
+ # that doesn't work unless the new ring is a PID, which it usually
+ # won't be.
+ V = FreeModule(R,n)
# Now let x = (X1,X2,...,Xn) be the vector whose entries are
# indeterminates...
sage: x.apply_univariate_polynomial(p)
0
+ The characteristic polynomials of the zero and unit elements
+ should be what we think they are in a subalgebra, too::
+
+ sage: J = RealCartesianProductEJA(3)
+ sage: p1 = J.one().characteristic_polynomial()
+ sage: q1 = J.zero().characteristic_polynomial()
+ sage: e0,e1,e2 = J.gens()
+ sage: A = (e0 + 2*e1 + 3*e2).subalgebra_generated_by() # dim 3
+ sage: p2 = A.one().characteristic_polynomial()
+ sage: q2 = A.zero().characteristic_polynomial()
+ sage: p1 == p2
+ True
+ sage: q1 == q2
+ True
+
"""
p = self.parent().characteristic_polynomial()
return p(*self.to_vector())
sage: x.is_invertible() == (x.det() != 0)
True
+ Ensure that the determinant is multiplicative on an associative
+ subalgebra as in Faraut and Koranyi's Proposition II.2.2::
+
+ sage: set_random_seed()
+ sage: J = random_eja().random_element().subalgebra_generated_by()
+ sage: x = J.random_element()
+ sage: y = J.random_element()
+ sage: (x*y).det() == x.det()*y.det()
+ True
+
"""
P = self.parent()
r = P.rank()