what can be supported in a general Jordan Algebra.
"""
-from sage.structure.unique_representation import UniqueRepresentation
from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
+from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
@staticmethod
"""
return "Euclidean Jordan algebra of degree {} over {}".format(self.degree(), self.base_ring())
+ def rank(self):
+ """
+ Return the rank of this EJA.
+ """
+ raise NotImplementedError
+
+
+ class Element(FiniteDimensionalAlgebraElement):
+ """
+ An element of a Euclidean Jordan algebra.
+ """
+
+ def __pow__(self, n):
+ """
+ Return ``self`` raised to the power ``n``.
+
+ Jordan algebras are always power-associative; see for
+ example Faraut and Koranyi, Proposition II.1.2 (ii).
+ """
+ A = self.parent()
+ if n == 0:
+ return A.one()
+ elif n == 1:
+ return self
+ else:
+ return A.element_class(A, self.vector()*(self.matrix()**(n-1)))
+
+
+ def degree(self):
+ """
+ Compute the degree of this element the straightforward way
+ according to the definition; by appending powers to a list
+ and figuring out its dimension (that is, whether or not
+ they're linearly dependent).
+
+ EXAMPLES::
+
+ sage: J = eja_ln(4)
+ sage: J.one().degree()
+ 1
+ sage: e0,e1,e2,e3 = J.gens()
+ sage: (e0 - e1).degree()
+ 2
+
+ """
+ d = 0
+ V = self.vector().parent()
+ vectors = [(self**d).vector()]
+ while V.span(vectors).dimension() > d:
+ d += 1
+ vectors.append((self**d).vector())
+ return d
+
+ def minimal_polynomial(self):
+ return self.matrix().minimal_polynomial()
+
+ def characteristic_polynomial(self):
+ return self.matrix().characteristic_polynomial()
def eja_rn(dimension, field=QQ):