[2.506...]
[0.000...]
+ This is another one that was difficult numerically, and caused
+ trouble even after we fixed the first two::
+
+ >>> from dunshire import *
+ >>> L = [[57.22233908627052301199, 41.70631373437460354126],
+ ... [83.04512571985074487202, 57.82581810406928468637]]
+ >>> K = NonnegativeOrthant(2)
+ >>> e1 = [7.31887017043399268346, 0.89744171905822367474]
+ >>> e2 = [0.11099824781179848388, 6.12564670639315345113]
+ >>> SLG = SymmetricLinearGame(L,K,e1,e2)
+ >>> print(SLG.solution())
+ Game value: 70.437...
+ Player 1 optimal:
+ [9.009...]
+ [0.000...]
+ Player 2 optimal:
+ [0.136...]
+ [0.000...]
+
+ And finally, here's one that returns an "optimal" solution, but
+ whose primal/dual objective function values are far apart::
+
+ >>> from dunshire import *
+ >>> L = [[ 6.49260076597376212248, -0.60528030227678542019],
+ ... [ 2.59896077096751731972, -0.97685530240286766457]]
+ >>> K = IceCream(2)
+ >>> e1 = [1, 0.43749513972645248661]
+ >>> e2 = [1, 0.46008379832200291260]
+ >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+ >>> print(SLG.solution())
+ Game value: 11.596...
+ Player 1 optimal:
+ [ 1.852...]
+ [-1.852...]
+ Player 2 optimal:
+ [ 1.777...]
+ [-1.777...]
+
"""
try:
opts = {'show_progress': False}
+++ /dev/null
-from dunshire import *
-L = [[57.22233908627052301199, 41.70631373437460354126],
- [83.04512571985074487202, 57.82581810406928468637]]
-K = NonnegativeOrthant(2)
-e1 = [7.31887017043399268346, 0.89744171905822367474]
-e2 = [0.11099824781179848388, 6.12564670639315345113]
-SLG = SymmetricLinearGame(L,K,e1,e2)