ALGORITHM:
- We appeal to the quadratic representation as in Koecher's
- Theorem 12 in Chapter III, Section 5.
+ In general we appeal to the quadratic representation as in
+ Koecher's Theorem 12 in Chapter III, Section 5. But if the
+ parent algebra's "characteristic polynomial of" coefficients
+ happen to be cached, then we use Proposition II.2.4 in Faraut
+ and Korányi which gives a formula for the inverse based on the
+ characteristic polynomial and the Cayley-Hamilton theorem for
+ Euclidean Jordan algebras::
SETUP::
....: x.operator().inverse()(J.one()) == x.inverse() )
True
- Proposition II.2.4 in Faraut and Korányi gives a formula for
- the inverse based on the characteristic polynomial and the
- Cayley-Hamilton theorem for Euclidean Jordan algebras::
+ Check that the fast (cached) and slow algorithms give the same
+ answer::
- sage: set_random_seed()
- sage: J = ComplexHermitianEJA(3)
- sage: x = J.random_element()
- sage: while not x.is_invertible():
- ....: x = J.random_element()
- sage: r = J.rank()
- sage: a = x.characteristic_polynomial().coefficients(sparse=False)
- sage: expected = (-1)^(r+1)/x.det()
- sage: expected *= sum( a[i+1]*x^i for i in range(r) )
- sage: x.inverse() == expected
+ sage: set_random_seed() # long time
+ sage: J = random_eja(field=QQ, orthonormalize=False) # long time
+ sage: x = J.random_element() # long time
+ sage: while not x.is_invertible(): # long time
+ ....: x = J.random_element() # long time
+ sage: slow = x.inverse() # long time
+ sage: _ = J._charpoly_coefficients() # long time
+ sage: fast = x.inverse() # long time
+ sage: slow == fast # long time
True
-
"""
if not self.is_invertible():
raise ValueError("element is not invertible")
sage: (not J.is_trivial()) and J.zero().is_invertible()
False
+ Test that the fast (cached) and slow algorithms give the same
+ answer::
+
+ sage: set_random_seed() # long time
+ sage: J = random_eja(field=QQ, orthonormalize=False) # long time
+ sage: x = J.random_element() # long time
+ sage: slow = x.is_invertible() # long time
+ sage: _ = J._charpoly_coefficients() # long time
+ sage: fast = x.is_invertible() # long time
+ sage: slow == fast # long time
+ True
+
"""
if self.is_zero():
if self.parent().is_trivial():