from sage.all import *
+def basically_the_same(K1,K2):
+ r"""
+ ``True`` if ``K1`` and ``K2`` are basically the same, and ``False``
+ otherwise.
+ """
+ if K1.lattice_dim() != K2.lattice_dim():
+ return False
+
+ if K1.nrays() != K2.nrays():
+ return False
+
+ if K1.dim() != K2.dim():
+ return False
+
+ if lineality(K1) != lineality(K2):
+ return False
+
+ if K1.is_solid() != K2.is_solid():
+ return False
+
+ if K1.is_strictly_convex() != K2.is_strictly_convex():
+ return False
+
+ if len(LL(K1)) != len(LL(K2)):
+ return False
+
+ C_of_K1 = discrete_complementarity_set(K1)
+ C_of_K2 = discrete_complementarity_set(K2)
+ if len(C_of_K1) != len(C_of_K2):
+ return False
+
+ if len(K1.facets()) != len(K2.facets()):
+ return False
+
+ return True
+
+
+
def iso_space(K):
r"""
Construct the space `W \times W^{\perp}` isomorphic to the ambient space
-def intersect_span(K1, K2):
- r"""
- Return a new cone obtained by intersecting ``K1`` with the span of ``K2``.
- """
- L = K1.lattice()
-
- if L.rank() != K2.lattice().rank():
- raise ValueError('K1 and K2 must belong to lattices of the same rank.')
-
- SL_gens = list(K2.rays())
- span_K2_gens = SL_gens + [ -g for g in SL_gens ]
-
- # The lattices have the same rank (see above) so this should work.
- span_K2 = Cone(span_K2_gens, L)
- return K1.intersection(span_K2)
-
-
-
def restrict_span(K, K2=None):
r"""
Restrict ``K`` into its own span, or the span of another cone.
The projected cone should always be solid::
sage: set_random_seed()
- sage: K = random_cone(max_dim = 10)
+ sage: K = random_cone(max_dim = 8)
sage: K_S = restrict_span(K)
sage: K_S.is_solid()
True
dimension as the space we restricted it to::
sage: set_random_seed()
- sage: K = random_cone(max_dim = 10)
- sage: K_S = restrict_span( intersect_span(K, K.dual()), K.dual() )
+ sage: K = random_cone(max_dim = 8)
+ sage: K_S = restrict_span(K, K.dual() )
sage: K_S.lattice_dim() == K.dual().dim()
True
This function has ``unrestrict_span()`` as its inverse::
sage: set_random_seed()
- sage: K = random_cone(max_dim = 10, solid=True)
+ sage: K = random_cone(max_dim = 8, solid=True)
sage: J = restrict_span(K)
sage: K == unrestrict_span(J,K)
True
This function should not affect the dimension of a cone::
sage: set_random_seed()
- sage: K = random_cone(max_dim = 10)
+ sage: K = random_cone(max_dim = 8)
sage: K.dim() == restrict_span(K).dim()
True
Nor should it affect the lineality of a cone::
sage: set_random_seed()
- sage: K = random_cone(max_dim = 10)
+ sage: K = random_cone(max_dim = 8)
sage: lineality(K) == lineality(restrict_span(K))
True
increase::
sage: set_random_seed()
- sage: K = random_cone(max_dim = 10)
- sage: J = intersect_span(K, K.dual())
- sage: lineality(K) >= lineality(restrict_span(J, K.dual()))
+ sage: K = random_cone(max_dim = 8)
+ sage: lineality(K) >= lineality(restrict_span(K))
+ True
+ sage: lineality(K) >= lineality(restrict_span(K, K.dual()))
True
If we do this according to our paper, then the result is proper::
sage: set_random_seed()
- sage: K = random_cone(max_dim = 10)
+ sage: K = random_cone(max_dim = 8, strictly_convex=False, solid=False)
sage: K_S = restrict_span(K)
sage: P = restrict_span(K_S.dual()).dual()
sage: P.is_proper()
True
+ sage: P = restrict_span(K_S, K_S.dual())
+ sage: P.is_proper()
+ True
- If ``K`` is strictly convex, then both ``K_W`` and
- ``K_star_W.dual()`` should equal ``K`` (after we unrestrict)::
+ ::
sage: set_random_seed()
- sage: K = random_cone(max_dim = 10, strictly_convex=True)
- sage: K_W = restrict_span(intersect_span(K,K.dual()), K.dual())
- sage: K_star_W_star = restrict_span(K.dual()).dual()
- sage: j1 = unrestrict_span(K_W, K.dual())
- sage: j2 = unrestrict_span(K_star_W_star, K.dual())
- sage: j1 == j2
+ sage: K = random_cone(max_dim = 8, strictly_convex=True, solid=False)
+ sage: K_S = restrict_span(K)
+ sage: P = restrict_span(K_S.dual()).dual()
+ sage: P.is_proper()
True
- sage: j1 == K
+ sage: P = restrict_span(K_S, K_S.dual())
+ sage: P.is_proper()
+ True
+
+ ::
+
+ sage: set_random_seed()
+ sage: K = random_cone(max_dim = 8, strictly_convex=False, solid=True)
+ sage: K_S = restrict_span(K)
+ sage: P = restrict_span(K_S.dual()).dual()
+ sage: P.is_proper()
+ True
+ sage: P = restrict_span(K_S, K_S.dual())
+ sage: P.is_proper()
+ True
+
+ ::
+
+ sage: set_random_seed()
+ sage: K = random_cone(max_dim = 8, strictly_convex=True, solid=True)
+ sage: K_S = restrict_span(K)
+ sage: P = restrict_span(K_S.dual()).dual()
+ sage: P.is_proper()
+ True
+ sage: P = restrict_span(K_S, K_S.dual())
+ sage: P.is_proper()
True
- sage: K; [ list(r) for r in K.rays() ]
Test the proposition in our paper concerning the duals, where the
subspace `W` is the span of `K^{*}`::
sage: set_random_seed()
- sage: K = random_cone(max_dim = 10, solid=False, strictly_convex=False)
- sage: K_W = restrict_span(intersect_span(K,K.dual()), K.dual())
- sage: K_star_W_star = restrict_span(K.dual(), K.dual()).dual()
- sage: K_W.nrays() == K_star_W_star.nrays()
- True
- sage: K_W.dim() == K_star_W_star.dim()
+ sage: K = random_cone(max_dim = 8, solid=False, strictly_convex=False)
+ sage: K_W = restrict_span(K, K.dual())
+ sage: K_star_W_star = restrict_span(K.dual()).dual()
+ sage: basically_the_same(K_W, K_star_W_star)
True
- sage: lineality(K_W) == lineality(K_star_W_star)
+
+ ::
+
+ sage: set_random_seed()
+ sage: K = random_cone(max_dim = 8, solid=True, strictly_convex=False)
+ sage: K_W = restrict_span(K, K.dual())
+ sage: K_star_W_star = restrict_span(K.dual()).dual()
+ sage: basically_the_same(K_W, K_star_W_star)
True
- sage: K_W.is_solid() == K_star_W_star.is_solid()
+
+ ::
+
+ sage: set_random_seed()
+ sage: K = random_cone(max_dim = 8, solid=False, strictly_convex=True)
+ sage: K_W = restrict_span(K, K.dual())
+ sage: K_star_W_star = restrict_span(K.dual()).dual()
+ sage: basically_the_same(K_W, K_star_W_star)
True
- sage: K_W.is_strictly_convex() == K_star_W_star.is_strictly_convex()
+
+ ::
+
+ sage: set_random_seed()
+ sage: K = random_cone(max_dim = 8, solid=True, strictly_convex=True)
+ sage: K_W = restrict_span(K, K.dual())
+ sage: K_star_W_star = restrict_span(K.dual()).dual()
+ sage: basically_the_same(K_W, K_star_W_star)
True
"""
ray_pairs = [ phi(r) for r in K.rays() ]
- if any([ w2 != W_perp.zero() for (_, w2) in ray_pairs ]):
- msg = 'Cone has nonzero components in W-perp!'
- raise ValueError(msg)
+ # Shouldn't matter?
+ #
+ #if any([ w2 != W_perp.zero() for (_, w2) in ray_pairs ]):
+ # msg = 'Cone has nonzero components in W-perp!'
+ # raise ValueError(msg)
# Represent the cone in terms of a basis for W, i.e. with smaller
# vectors.
dimension of the ambient space, inclusive::
sage: set_random_seed()
- sage: K = random_cone(max_dim = 10)
+ sage: K = random_cone(max_dim = 8)
sage: l = lineality(K)
sage: l in ZZ
True
A strictly convex cone should have lineality zero::
sage: set_random_seed()
- sage: K = random_cone(max_dim = 10, strictly_convex = True)
+ sage: K = random_cone(max_dim = 8, strictly_convex = True)
sage: lineality(K)
0
equal to the dimension of the ambient space::
sage: K = Cone([], lattice=ToricLattice(0))
+ sage: K.lattice_dim()
+ 0
sage: codim(K)
0
sage: K = Cone([(0,)])
+ sage: K.lattice_dim()
+ 1
sage: codim(K)
1
sage: K = Cone([(0,0)])
+ sage: K.lattice_dim()
+ 2
sage: codim(K)
2
the dimension of the ambient space, inclusive::
sage: set_random_seed()
- sage: K = random_cone(max_dim = 10)
+ sage: K = random_cone(max_dim = 8)
sage: c = codim(K)
sage: c in ZZ
True
A solid cone should have codimension zero::
sage: set_random_seed()
- sage: K = random_cone(max_dim = 10, solid = True)
+ sage: K = random_cone(max_dim = 8, solid = True)
sage: codim(K)
0
The codimension of a cone is equal to the lineality of its dual::
sage: set_random_seed()
- sage: K = random_cone(max_dim = 10, solid = True)
+ sage: K = random_cone(max_dim = 8, solid = True)
sage: codim(K) == lineality(K.dual())
True
[0 0 1]
]
+ If our cone is the entire space, then every transformation on it is
+ Lyapunov-like::
+
+ sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)])
+ sage: M = MatrixSpace(QQ,2)
+ sage: M.basis() == LL(K)
+ True
+
TESTS:
The inner product `\left< L\left(x\right), s \right>` is zero for
of the cone::
sage: set_random_seed()
- sage: K = random_cone(max_dim=8, max_rays=10)
+ sage: K = random_cone(max_dim=8)
sage: C_of_K = discrete_complementarity_set(K)
sage: l = [ (L*x).inner_product(s) for (x,s) in C_of_K for L in LL(K) ]
sage: sum(map(abs, l))
\right)`
sage: set_random_seed()
- sage: K = random_cone(max_dim=8, max_rays=10)
+ sage: K = random_cone(max_dim=8)
sage: LL2 = [ L.transpose() for L in LL(K.dual()) ]
sage: V = VectorSpace( K.lattice().base_field(), K.lattice_dim()^2)
sage: LL1_vecs = [ V(m.list()) for m in LL(K) ]
[Rudolf et al.]_::
sage: set_random_seed()
- sage: K1 = random_cone(max_dim=10, strictly_convex=True, solid=True)
- sage: K2 = random_cone(max_dim=10, strictly_convex=True, solid=True)
+ sage: K1 = random_cone(max_dim=8, strictly_convex=True, solid=True)
+ sage: K2 = random_cone(max_dim=8, strictly_convex=True, solid=True)
sage: K = K1.cartesian_product(K2)
sage: lyapunov_rank(K) == lyapunov_rank(K1) + lyapunov_rank(K2)
True
itself [Rudolf et al.]_::
sage: set_random_seed()
- sage: K = random_cone(max_dim=10, max_rays=10)
+ sage: K = random_cone(max_dim=8)
sage: lyapunov_rank(K) == lyapunov_rank(K.dual())
True
Make sure we exercise the non-strictly-convex/non-solid case::
sage: set_random_seed()
- sage: K = random_cone(max_dim=10, strictly_convex=False, solid=False)
+ sage: K = random_cone(max_dim=8, strictly_convex=False, solid=False)
+ sage: lyapunov_rank(K) == lyapunov_rank(K.dual())
+ True
+
+ Let's check the other permutations as well, just to be sure::
+
+ sage: set_random_seed()
+ sage: K = random_cone(max_dim=8, strictly_convex=False, solid=True)
+ sage: lyapunov_rank(K) == lyapunov_rank(K.dual())
+ True
+
+ ::
+
+ sage: set_random_seed()
+ sage: K = random_cone(max_dim=8, strictly_convex=True, solid=False)
+ sage: lyapunov_rank(K) == lyapunov_rank(K.dual())
+ True
+
+ ::
+
+ sage: set_random_seed()
+ sage: K = random_cone(max_dim=8, strictly_convex=True, solid=True)
sage: lyapunov_rank(K) == lyapunov_rank(K.dual())
True
the Lyapunov rank of the trivial cone will be zero::
sage: set_random_seed()
- sage: K = random_cone(max_dim=10, strictly_convex=True, solid=True)
+ sage: K = random_cone(max_dim=8, strictly_convex=True, solid=True)
sage: b = lyapunov_rank(K)
sage: n = K.lattice_dim()
sage: (n == 0 or 1 <= b) and b <= n
Lyapunov rank `n-1` in `n` dimensions::
sage: set_random_seed()
- sage: K = random_cone(max_dim=10)
+ sage: K = random_cone(max_dim=8)
sage: b = lyapunov_rank(K)
sage: n = K.lattice_dim()
sage: b == n-1
reduced to that of a proper cone [Orlitzky/Gowda]_::
sage: set_random_seed()
- sage: K = random_cone(max_dim=10)
+ sage: K = random_cone(max_dim=8)
sage: actual = lyapunov_rank(K)
sage: K_S = restrict_span(K)
sage: P = restrict_span(K_S.dual()).dual()
The Lyapunov rank of a proper cone is just the dimension of ``LL(K)``::
sage: set_random_seed()
- sage: K = random_cone(max_dim=10, strictly_convex=True, solid=True)
+ sage: K = random_cone(max_dim=8, strictly_convex=True, solid=True)
+ sage: lyapunov_rank(K) == len(LL(K))
+ True
+
+ In fact the same can be said of any cone. These additional tests
+ just increase our confidence that the reduction scheme works::
+
+ sage: set_random_seed()
+ sage: K = random_cone(max_dim=8, strictly_convex=True, solid=False)
+ sage: lyapunov_rank(K) == len(LL(K))
+ True
+
+ ::
+
+ sage: set_random_seed()
+ sage: K = random_cone(max_dim=8, strictly_convex=False, solid=True)
+ sage: lyapunov_rank(K) == len(LL(K))
+ True
+
+ ::
+
+ sage: set_random_seed()
+ sage: K = random_cone(max_dim=8, strictly_convex=False, solid=False)
sage: lyapunov_rank(K) == len(LL(K))
True
# K is not pointed, project its dual onto its span.
# Uses a proposition from our paper, i.e. this is
# equivalent to K = restrict_span(K.dual()).dual()
- K = restrict_span(intersect_span(K,K.dual()), K.dual())
- #K = restrict_span(K.dual()).dual()
-
- #Ks = [ list(r) for r in sorted(K.rays()) ]
- #Js = [ list(r) for r in sorted(J.rays()) ]
-
- #if Ks != Js:
- # print [ list(r) for r in K_orig.rays() ]
+ #K = restrict_span(intersect_span(K,K.dual()), K.dual())
+ K = restrict_span(K, K.dual())
# Lemma 3
beta += m * l