#
MJOTEX = mjo-algebra.tex mjo-algorithm.tex mjo-arrow.tex mjo-calculus.tex
MJOTEX += mjo-common.tex mjo-complex.tex mjo-cone.tex mjo-convex.tex
-MJOTEX += mjo-eja.tex mjo-font.tex mjo-linear_algebra.tex mjo-listing.tex
-MJOTEX += mjo-proof_by_cases.tex mjo-set.tex mjo-theorem.tex
+MJOTEX += mjo-eja.tex mjo-font.tex mjo-hurwitz.tex mjo-linear_algebra.tex
+MJOTEX += mjo-listing.tex mjo-proof_by_cases.tex mjo-set.tex mjo-theorem.tex
MJOTEX += mjo-theorem-star.tex mjo-topology.tex mjo.bst
# Compile a list of raw source code listings (*.listing) and their
\end{itemize}
\end{section}
+ \begin{section}{Hurwitz}
+ Here lies the Hurwitz algebras, like the quaternions
+ $\quaternions$ and octonions $\octonions$.
+ \end{section}
+
\begin{section}{Linear algebra}
The absolute value of $x$ is $\abs{x}$, or its norm is
$\norm{x}$. The inner product of $x$ and $y$ is $\ip{x}{y}$ and
--- /dev/null
+\ifx\havemjohurwitz\undefined
+\def\havemjohurwitz{1}
+
+
+\newcommand*{\quaternions}{\mathbb{H}}
+
+\ifdefined\newglossaryentry
+ \newglossaryentry{quaternions}{
+ name={\ensuremath{\quaternions}},
+ description={the algebra of quaternions},
+ sort=H
+ }
+\fi
+
+
+\newcommand*{\octonions}{\mathbb{O}}
+
+\ifdefined\newglossaryentry
+ \newglossaryentry{octonions}{
+ name={\ensuremath{\octonions}},
+ description={the algebra of octonions},
+ sort=O
+ }
+\fi
+
+
+\fi
\input{mjo-convex}
\input{mjo-eja}
\input{mjo-font}
+\input{mjo-hurwitz}
\input{mjo-linear_algebra}
\input{mjo-listing}
\input{mjo-proof_by_cases}