]> gitweb.michael.orlitzky.com - sage.d.git/commitdiff
eja: begin rework of Cartesian product EJA.
authorMichael Orlitzky <michael@orlitzky.com>
Sat, 20 Feb 2021 04:29:59 +0000 (23:29 -0500)
committerMichael Orlitzky <michael@orlitzky.com>
Sat, 20 Feb 2021 04:29:59 +0000 (23:29 -0500)
mjo/eja/eja_algebra.py

index c35bf256453cfa9a3758c034a47a043745eb0c2b..c7c0df8de0e67aef03b391099ea6a72374dce13a 100644 (file)
@@ -20,7 +20,9 @@ from itertools import repeat
 
 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
 from sage.categories.magmatic_algebras import MagmaticAlgebras
-from sage.combinat.free_module import CombinatorialFreeModule
+from sage.categories.sets_cat import cartesian_product
+from sage.combinat.free_module import (CombinatorialFreeModule,
+                                       CombinatorialFreeModule_CartesianProduct)
 from sage.matrix.constructor import matrix
 from sage.matrix.matrix_space import MatrixSpace
 from sage.misc.cachefunc import cached_method
@@ -687,7 +689,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         Why implement this for non-matrix algebras? Avoiding special
         cases for the :class:`BilinearFormEJA` pays with simplicity in
         its own right. But mainly, we would like to be able to assume
-        that elements of a :class:`DirectSumEJA` can be displayed
+        that elements of a :class:`CartesianProductEJA` can be displayed
         nicely, without having to have special classes for direct sums
         one of whose components was a matrix algebra.
 
@@ -2675,117 +2677,216 @@ class TrivialEJA(ConcreteEJA):
         return cls(**kwargs)
 
 
-class DirectSumEJA(FiniteDimensionalEJA):
+class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
+                          FiniteDimensionalEJA):
     r"""
-    The external (orthogonal) direct sum of two other Euclidean Jordan
-    algebras. Essentially the Cartesian product of its two factors.
-    Every Euclidean Jordan algebra decomposes into an orthogonal
-    direct sum of simple Euclidean Jordan algebras, so no generality
-    is lost by providing only this construction.
+    The external (orthogonal) direct sum of two or more Euclidean
+    Jordan algebras. Every Euclidean Jordan algebra decomposes into an
+    orthogonal direct sum of simple Euclidean Jordan algebras which is
+    then isometric to a Cartesian product, so no generality is lost by
+    providing only this construction.
 
     SETUP::
 
-        sage: from mjo.eja.eja_algebra import (random_eja,
+        sage: from mjo.eja.eja_algebra import (CartesianProductEJA,
         ....:                                  HadamardEJA,
-        ....:                                  RealSymmetricEJA,
-        ....:                                  DirectSumEJA)
+        ....:                                  JordanSpinEJA,
+        ....:                                  RealSymmetricEJA)
 
-    EXAMPLES::
+    EXAMPLES:
 
+    The Jordan product is inherited from our factors and implemented by
+    our CombinatorialFreeModule Cartesian product superclass::
+
+        sage: set_random_seed()
         sage: J1 = HadamardEJA(2)
-        sage: J2 = RealSymmetricEJA(3)
-        sage: J = DirectSumEJA(J1,J2)
-        sage: J.dimension()
-        8
-        sage: J.rank()
-        5
-        sage: J.matrix_space()
-        The Cartesian product of (Full MatrixSpace of 2 by 1 dense matrices
-        over Algebraic Real Field, Full MatrixSpace of 3 by 3 dense matrices
-        over Algebraic Real Field)
+        sage: J2 = RealSymmetricEJA(2)
+        sage: J = cartesian_product([J1,J2])
+        sage: x,y = J.random_elements(2)
+        sage: x*y in J
+        True
+
+    The ability to retrieve the original factors is implemented by our
+    CombinatorialFreeModule Cartesian product superclass::
+
+       sage: J1 = HadamardEJA(2, field=QQ)
+       sage: J2 = JordanSpinEJA(3, field=QQ)
+       sage: J = cartesian_product([J1,J2])
+       sage: J.cartesian_factors()
+       (Euclidean Jordan algebra of dimension 2 over Rational Field,
+        Euclidean Jordan algebra of dimension 3 over Rational Field)
 
     TESTS:
 
-    The external direct sum construction is only valid when the two factors
-    have the same base ring; an error is raised otherwise::
+    All factors must share the same base field::
 
-        sage: set_random_seed()
-        sage: J1 = random_eja(field=AA)
-        sage: J2 = random_eja(field=QQ,orthonormalize=False)
-        sage: J = DirectSumEJA(J1,J2)
+        sage: J1 = HadamardEJA(2, field=QQ)
+        sage: J2 = RealSymmetricEJA(2)
+        sage: CartesianProductEJA((J1,J2))
         Traceback (most recent call last):
         ...
-        ValueError: algebras must share the same base field
-
+        ValueError: all factors must share the same base field
     """
-    def __init__(self, J1, J2, **kwargs):
-        if J1.base_ring() != J2.base_ring():
-            raise ValueError("algebras must share the same base field")
-        field = J1.base_ring()
+    def __init__(self, modules, **kwargs):
+        CombinatorialFreeModule_CartesianProduct.__init__(self, modules, **kwargs)
+        field = modules[0].base_ring()
+        if not all( J.base_ring() == field for J in modules ):
+            raise ValueError("all factors must share the same base field")
 
-        M = J1.matrix_space().cartesian_product(J2.matrix_space())
-        self._cartprod_algebra = J1.cartesian_product(J2)
+        M = cartesian_product( [J.matrix_space() for J in modules] )
 
-        self._matrix_basis = tuple( [M((a,0)) for a in J1.matrix_basis()] +
-                                    [M((0,b)) for b in J2.matrix_basis()] )
+        m = len(modules)
+        W = VectorSpace(field,m)
+        self._matrix_basis = []
+        for k in range(m):
+            for a in modules[k].matrix_basis():
+                v = W.zero().list()
+                v[k] = a
+                self._matrix_basis.append(M(v))
 
-        n = len(self._matrix_basis)
-        self._sets = None
-        CombinatorialFreeModule.__init__(
-                         self,
-                         field,
-                         range(n),
-                         category=self._cartprod_algebra.category(),
-                         bracket=False,
-                         **kwargs)
-        self.rank.set_cache(J1.rank() + J2.rank())
+        self._matrix_basis = tuple(self._matrix_basis)
 
+        n = len(self._matrix_basis)
+        # TODO:
+        #
+        # Initialize the FDEJA class, too. Does this override the
+        # initialization that we did for the
+        # CombinatorialFreeModule_CartesianProduct class? If not, we
+        # will probably have to duplicate some of the work (i.e. one
+        # of the constructors).  Since the CartesianProduct one is
+        # smaller, that makes the most sense to copy/paste if it comes
+        # down to that.
+        #
 
+        self.rank.set_cache(sum(J.rank() for J in modules))
 
-    def product(self,x,y):
+    @cached_method
+    def cartesian_projection(self, i):
         r"""
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-            ....:                                  ComplexHermitianEJA,
-            ....:                                  DirectSumEJA)
+            sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  HadamardEJA,
+            ....:                                  RealSymmetricEJA)
 
-        TESTS::
+        EXAMPLES::
+
+            sage: J1 = HadamardEJA(2)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: J.cartesian_projection(0)
+            Linear operator between finite-dimensional Euclidean Jordan
+            algebras represented by the matrix:
+            [1 0 0 0 0]
+            [0 1 0 0 0]
+            Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
+            Real Field (+) Euclidean Jordan algebra of dimension 3 over
+            Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 2 over Algebraic
+            Real Field
+            sage: J.cartesian_projection(1)
+            Linear operator between finite-dimensional Euclidean Jordan
+            algebras represented by the matrix:
+            [0 0 1 0 0]
+            [0 0 0 1 0]
+            [0 0 0 0 1]
+            Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
+            Real Field (+) Euclidean Jordan algebra of dimension 3 over
+            Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 3 over Algebraic
+            Real Field
+
+        TESTS:
+
+        The answer never changes::
 
             sage: set_random_seed()
-            sage: J1 = JordanSpinEJA(3, field=QQ)
-            sage: J2 = ComplexHermitianEJA(2, field=QQ, orthonormalize=False)
-            sage: J = DirectSumEJA(J1,J2)
-            sage: J.random_element()*J.random_element() in J
+            sage: J1 = random_eja()
+            sage: J2 = random_eja()
+            sage: J = cartesian_product([J1,J2])
+            sage: P0 = J.cartesian_projection(0)
+            sage: P1 = J.cartesian_projection(0)
+            sage: P0 == P1
             True
 
         """
-        xv = self._cartprod_algebra.from_vector(x.to_vector())
-        yv = self._cartprod_algebra.from_vector(y.to_vector())
-        return self.from_vector((xv*yv).to_vector())
+        Ji = self.cartesian_factors()[i]
+        # We reimplement the CombinatorialFreeModule superclass method
+        # because if we don't, something gets messed up with the caching
+        # and the answer changes the second time you run it. See the TESTS.
+        Pi = self._module_morphism(lambda j_t: Ji.monomial(j_t[1])
+                                   if i == j_t[0] else Ji.zero(),
+                                   codomain=Ji)
+        return FiniteDimensionalEJAOperator(self,Ji,Pi.matrix())
 
-
-    def cartesian_factors(self):
+    @cached_method
+    def cartesian_embedding(self, i):
         r"""
-        Return the pair of this algebra's factors.
-
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import (HadamardEJA,
-            ....:                                  JordanSpinEJA,
-            ....:                                  DirectSumEJA)
+            sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  HadamardEJA,
+            ....:                                  RealSymmetricEJA)
 
         EXAMPLES::
 
-            sage: J1 = HadamardEJA(2, field=QQ)
-            sage: J2 = JordanSpinEJA(3, field=QQ)
-            sage: J = DirectSumEJA(J1,J2)
-            sage: J.cartesian_factors()
-            (Euclidean Jordan algebra of dimension 2 over Rational Field,
-             Euclidean Jordan algebra of dimension 3 over Rational Field)
+            sage: J1 = HadamardEJA(2)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: J
+            foo
+            sage: J.cartesian_embedding
+            bar
+            sage: J.cartesian_embedding(0)
+            Linear operator between finite-dimensional Euclidean Jordan
+            algebras represented by the matrix:
+            [1 0]
+            [0 1]
+            [0 0]
+            [0 0]
+            [0 0]
+            Domain: Euclidean Jordan algebra of dimension 2 over
+            Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 2 over
+            Algebraic Real Field (+) Euclidean Jordan algebra of
+            dimension 3 over Algebraic Real Field
+            sage: J.cartesian_embedding(1)
+            Linear operator between finite-dimensional Euclidean Jordan
+            algebras represented by the matrix:
+            [0 0 0]
+            [0 0 0]
+            [1 0 0]
+            [0 1 0]
+            [0 0 1]
+            Domain: Euclidean Jordan algebra of dimension 3 over
+            Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 2 over
+            Algebraic Real Field (+) Euclidean Jordan algebra of
+            dimension 3 over Algebraic Real Field
+
+        TESTS:
+
+        The answer never changes::
+
+            sage: set_random_seed()
+            sage: J1 = random_eja()
+            sage: J2 = random_eja()
+            sage: J = cartesian_product([J1,J2])
+            sage: E0 = J.cartesian_embedding(0)
+            sage: E1 = J.cartesian_embedding(0)
+            sage: E0 == E1
+            True
 
         """
-        return self._cartprod_algebra.cartesian_factors()
+        Ji = self.cartesian_factors()[i]
+        # We reimplement the CombinatorialFreeModule superclass method
+        # because if we don't, something gets messed up with the caching
+        # and the answer changes the second time you run it. See the TESTS.
+        Ei = Ji._module_morphism(lambda t: self.monomial((i, t)), codomain=self)
+        return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
+
+
+FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
 
 
 #     def projections(self):