....: for g in gs )
True
+ A solution ``g`` to Exercise 6 in Section 2.3 of Cox, Little, and
+ O'Shea that lives in the ideal generated by ``f1`` and ``f2`` but
+ which has nonzero remainder after division::
+
+ sage: R = PolynomialRing(QQ, 'x,y', order='deglex')
+ sage: x,y = R.gens()
+ sage: f1 = 2*x*y^2 - x
+ sage: f2 = 3*x^2*y - y - 1
+ sage: I = R.ideal(f1,f2)
+ sage: g = 2*y*f2
+ sage: g in I
+ True
+ sage: (qs,r) = multidiv(g,[f1,f2])
+ sage: r.is_zero()
+ False
+
+ Two solutions ``g`` to Exercise 7 in Section 2.3 of Cox, Little, and
+ O'Shea that live in the ideal generated by ``f1``, ``f2``, and ``f3``
+ but which have nonzero remainders after division::
+
+ sage: R = PolynomialRing(QQ, 'x,y,z', order='deglex')
+ sage: x,y,z = R.gens()
+ sage: f1 = x^4*y^2 - z
+ sage: f2 = x^3*y^3 - 1
+ sage: f3 = x^2*y^4 - 2*z
+ sage: I = R.ideal(f1,f2,f3)
+ sage: g = x^2*f3
+ sage: g in I
+ True
+ sage: (qs, r) = multidiv(g, [f1,f2,f3])
+ sage: r.is_zero()
+ False
+ sage: g = x*f2
+ sage: g in I
+ True
+ sage: (qs, r) = multidiv(g, [f1,f2,f3])
+ sage: r.is_zero()
+ False
+
TESTS:
If we get a zero remainder, then the numerator should belong to