]> gitweb.michael.orlitzky.com - sage.d.git/commitdiff
mjo/polynomial.py: add two more examples from exercises in the text.
authorMichael Orlitzky <michael@orlitzky.com>
Wed, 20 Feb 2019 05:38:26 +0000 (00:38 -0500)
committerMichael Orlitzky <michael@orlitzky.com>
Wed, 20 Feb 2019 05:38:26 +0000 (00:38 -0500)
mjo/polynomial.py

index 7414bdf16b33e8178c746a3edf5b6fa4dd3f985b..4fe4b71f03c53cd167f0d86975a9acfb1c28ff96 100644 (file)
@@ -75,6 +75,45 @@ def multidiv(f, gs):
         ....:          for g in gs )
         True
 
+    A solution ``g`` to Exercise 6 in Section 2.3 of Cox, Little, and
+    O'Shea that lives in the ideal generated by ``f1`` and ``f2`` but
+    which has nonzero remainder after division::
+
+        sage: R = PolynomialRing(QQ, 'x,y', order='deglex')
+        sage: x,y = R.gens()
+        sage: f1 = 2*x*y^2 - x
+        sage: f2 = 3*x^2*y - y - 1
+        sage: I = R.ideal(f1,f2)
+        sage: g = 2*y*f2
+        sage: g in I
+        True
+        sage: (qs,r) = multidiv(g,[f1,f2])
+        sage: r.is_zero()
+        False
+
+    Two solutions ``g`` to Exercise 7 in Section 2.3 of Cox, Little, and
+    O'Shea that live in the ideal generated by ``f1``, ``f2``, and ``f3``
+    but which have nonzero remainders after division::
+
+        sage: R = PolynomialRing(QQ, 'x,y,z', order='deglex')
+        sage: x,y,z = R.gens()
+        sage: f1 = x^4*y^2 - z
+        sage: f2 = x^3*y^3 - 1
+        sage: f3 = x^2*y^4 - 2*z
+        sage: I = R.ideal(f1,f2,f3)
+        sage: g = x^2*f3
+        sage: g in I
+        True
+        sage: (qs, r) = multidiv(g, [f1,f2,f3])
+        sage: r.is_zero()
+        False
+        sage: g = x*f2
+        sage: g in I
+        True
+        sage: (qs, r) = multidiv(g, [f1,f2,f3])
+        sage: r.is_zero()
+        False
+
     TESTS:
 
     If we get a zero remainder, then the numerator should belong to