return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
+ def subalgebra(self, basis, **kwargs):
+ r"""
+ Create a subalgebra of this algebra from the given basis.
+
+ Only overridden to allow us to use a special Cartesian product
+ subalgebra class.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import (HadamardEJA,
+ ....: QuaternionHermitianEJA)
+
+ EXAMPLES:
+
+ Subalgebras of Cartesian product EJAs have a different class
+ than those of non-Cartesian-product EJAs::
+
+ sage: J1 = HadamardEJA(2,field=QQ,orthonormalize=False)
+ sage: J2 = QuaternionHermitianEJA(0,field=QQ,orthonormalize=False)
+ sage: J = cartesian_product([J1,J2])
+ sage: K1 = J1.subalgebra((J1.one(),), orthonormalize=False)
+ sage: K = J.subalgebra((J.one(),), orthonormalize=False)
+ sage: K1.__class__ is K.__class__
+ False
+
+ """
+ from mjo.eja.eja_subalgebra import FiniteDimensionalCartesianProductEJASubalgebra
+ return FiniteDimensionalCartesianProductEJASubalgebra(self, basis, **kwargs)
FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
return self.trace_inner_product(self).sqrt()
-class CartesianProductEJAElement(FiniteDimensionalEJAElement):
+class CartesianProductParentEJAElement(FiniteDimensionalEJAElement):
+ r"""
+ An intermediate class for elements that have a Cartesian
+ product as their parent algebra.
+
+ This is needed because the ``to_matrix`` method (which gives you a
+ representation from the superalgebra) needs to do special stuff
+ for Cartesian products. Specifically, an EJA subalgebra of a
+ Cartesian product EJA will not itself be a Cartesian product (it
+ has its own basis) -- but we want ``to_matrix()`` to be able to
+ give us a Cartesian product representation.
+ """
+ def to_matrix(self):
+ # An override is necessary to call our custom _scale().
+ B = self.parent().matrix_basis()
+ W = self.parent().matrix_space()
+
+ # Aaaaand linear combinations don't work in Cartesian
+ # product spaces, even though they provide a method with
+ # that name. This is hidden in a subclass because the
+ # _scale() function is slow.
+ pairs = zip(B, self.to_vector())
+ return W.sum( _scale(b, alpha) for (b,alpha) in pairs )
+
+class CartesianProductEJAElement(CartesianProductParentEJAElement):
def det(self):
r"""
Compute the determinant of this product-element using the
"""
from sage.misc.misc_c import prod
return prod( f.det() for f in self.cartesian_factors() )
-
- def to_matrix(self):
- # An override is necessary to call our custom _scale().
- B = self.parent().matrix_basis()
- W = self.parent().matrix_space()
-
- # Aaaaand linear combinations don't work in Cartesian
- # product spaces, even though they provide a method with
- # that name. This is hidden behind an "if" because the
- # _scale() function is slow.
- pairs = zip(B, self.to_vector())
- return W.sum( _scale(b, alpha) for (b,alpha) in pairs )
from sage.misc.cachefunc import cached_method
from mjo.eja.eja_algebra import FiniteDimensionalEJA
-from mjo.eja.eja_element import FiniteDimensionalEJAElement
+from mjo.eja.eja_element import (FiniteDimensionalEJAElement,
+ CartesianProductParentEJAElement)
class FiniteDimensionalEJASubalgebraElement(FiniteDimensionalEJAElement):
"""
Element = FiniteDimensionalEJASubalgebraElement
+
+
+
+class FiniteDimensionalCartesianProductEJASubalgebraElement(FiniteDimensionalEJASubalgebraElement, CartesianProductParentEJAElement):
+ r"""
+ The class for elements that both belong to a subalgebra and
+ have a Cartesian product algebra as their parent. By inheriting
+ :class:`CartesianProductParentEJAElement` in addition to
+ :class:`FiniteDimensionalEJASubalgebraElement`, we allow the
+ ``to_matrix()`` method to be overridden with the version that
+ works on Cartesian products.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import (HadamardEJA,
+ ....: RealSymmetricEJA)
+
+ TESTS:
+
+ This used to fail when ``subalgebra_idempotent()`` tried to
+ embed the subalgebra element back into the original EJA::
+
+ sage: J1 = HadamardEJA(0, field=QQ, orthonormalize=False)
+ sage: J2 = RealSymmetricEJA(2, field=QQ, orthonormalize=False)
+ sage: J = cartesian_product([J1,J2])
+ sage: J.one().subalgebra_idempotent() == J.one()
+ True
+
+ """
+ pass
+
+class FiniteDimensionalCartesianProductEJASubalgebra(FiniteDimensionalEJASubalgebra):
+ r"""
+ Subalgebras whose parents are Cartesian products. Exists only
+ to specify a special element class that will (in addition)
+ inherit from ``CartesianProductParentEJAElement``.
+ """
+ Element = FiniteDimensionalCartesianProductEJASubalgebraElement