' e1 = {:s},\n' \
' e2 = {:s},\n' \
' Condition((L, K, e1, e2)) = {:f}.'
- indented_L = '\n '.join(str(self._L).splitlines())
- indented_e1 = '\n '.join(str(self._e1).splitlines())
- indented_e2 = '\n '.join(str(self._e2).splitlines())
+ indented_L = '\n '.join(str(self.L()).splitlines())
+ indented_e1 = '\n '.join(str(self.e1()).splitlines())
+ indented_e2 = '\n '.join(str(self.e2()).splitlines())
return tpl.format(indented_L,
- str(self._K),
+ str(self.K()),
indented_e1,
indented_e2,
self.condition())
<BLANKLINE>
"""
- return matrix([0, self._e2], (1, self.dimension() + 1), 'd')
+ return matrix([0, self.e2()], (1, self.dimension() + 1), 'd')
"""
identity_matrix = identity(self.dimension())
return append_row(append_col(self._zero(), -identity_matrix),
- append_col(self._e1, -self._L))
+ append_col(self.e1(), -self.L()))
def _c(self):
Condition((L, K, e1, e2)) = 44.476...
"""
- # We pass ``self._L`` right back into the constructor, because
+ # We pass ``self.L()`` right back into the constructor, because
# it will be transposed there. And keep in mind that ``self._K``
# is its own dual.
- return SymmetricLinearGame(self._L,
- self._K,
- self._e2,
- self._e1)
+ return SymmetricLinearGame(self.L(),
+ self.K(),
+ self.e2(),
+ self.e1())