]> gitweb.michael.orlitzky.com - sage.d.git/commitdiff
eja: refactor the element subalgebra stuff into generic subalgebra.
authorMichael Orlitzky <michael@orlitzky.com>
Sun, 10 Nov 2019 00:42:25 +0000 (19:42 -0500)
committerMichael Orlitzky <michael@orlitzky.com>
Sun, 10 Nov 2019 00:42:25 +0000 (19:42 -0500)
A messy job, but I got the tests passing. They certainly need some
cleanup, and we should test non-element subalgebras too.

mjo/eja/eja_element_subalgebra.py
mjo/eja/eja_subalgebra.py [new file with mode: 0644]

index 2a82940f51c47c44aea0efdc47a202c243319ba6..7cf3f3702adb5832a7ef4bb86a80b24431d87a54 100644 (file)
 from sage.matrix.constructor import matrix
 
-from mjo.eja.eja_algebra import FiniteDimensionalEuclideanJordanAlgebra
-from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
+from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
 
-class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensionalEuclideanJordanAlgebraElement):
-    """
-    SETUP::
 
-        sage: from mjo.eja.eja_algebra import random_eja
-
-    TESTS::
-
-    The natural representation of an element in the subalgebra is
-    the same as its natural representation in the superalgebra::
-
-        sage: set_random_seed()
-        sage: A = random_eja().random_element().subalgebra_generated_by()
-        sage: y = A.random_element()
-        sage: actual = y.natural_representation()
-        sage: expected = y.superalgebra_element().natural_representation()
-        sage: actual == expected
-        True
-
-    The left-multiplication-by operator for elements in the subalgebra
-    works like it does in the superalgebra, even if we orthonormalize
-    our basis::
-
-        sage: set_random_seed()
-        sage: x = random_eja(AA).random_element()
-        sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
-        sage: y = A.random_element()
-        sage: y.operator()(A.one()) == y
-        True
-
-    """
-
-    def superalgebra_element(self):
-        """
-        Return the object in our algebra's superalgebra that corresponds
-        to myself.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
-            ....:                                  random_eja)
-
-        EXAMPLES::
-
-            sage: J = RealSymmetricEJA(3)
-            sage: x = sum(J.gens())
-            sage: x
-            e0 + e1 + e2 + e3 + e4 + e5
-            sage: A = x.subalgebra_generated_by()
-            sage: A(x)
-            f1
-            sage: A(x).superalgebra_element()
-            e0 + e1 + e2 + e3 + e4 + e5
-
-        TESTS:
-
-        We can convert back and forth faithfully::
-
-            sage: set_random_seed()
-            sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: A = x.subalgebra_generated_by()
-            sage: A(x).superalgebra_element() == x
-            True
-            sage: y = A.random_element()
-            sage: A(y.superalgebra_element()) == y
-            True
-
-        """
-        return self.parent().superalgebra().linear_combination(
-          zip(self.parent()._superalgebra_basis, self.to_vector()) )
-
-
-
-
-class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclideanJordanAlgebra):
-    """
-    The subalgebra of an EJA generated by a single element.
-
-    SETUP::
-
-        sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
-        ....:                                  JordanSpinEJA)
-
-    TESTS:
-
-    Ensure that our generator names don't conflict with the superalgebra::
-
-        sage: J = JordanSpinEJA(3)
-        sage: J.one().subalgebra_generated_by().gens()
-        (f0,)
-        sage: J = JordanSpinEJA(3, prefix='f')
-        sage: J.one().subalgebra_generated_by().gens()
-        (g0,)
-        sage: J = JordanSpinEJA(3, prefix='b')
-        sage: J.one().subalgebra_generated_by().gens()
-        (c0,)
-
-    Ensure that we can find subalgebras of subalgebras::
-
-        sage: A = ComplexHermitianEJA(3).one().subalgebra_generated_by()
-        sage: B = A.one().subalgebra_generated_by()
-        sage: B.dimension()
-        1
-
-    """
+class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclideanJordanSubalgebra):
     def __init__(self, elt, orthonormalize_basis):
         self._superalgebra = elt.parent()
         category = self._superalgebra.category().Associative()
         V = self._superalgebra.vector_space()
         field = self._superalgebra.base_ring()
 
-        # A half-assed attempt to ensure that we don't collide with
-        # the superalgebra's prefix (ignoring the fact that there
-        # could be super-superelgrbas in scope). If possible, we
-        # try to "increment" the parent algebra's prefix, although
-        # this idea goes out the window fast because some prefixen
-        # are off-limits.
-        prefixen = [ 'f', 'g', 'h', 'a', 'b', 'c', 'd' ]
-        try:
-            prefix = prefixen[prefixen.index(self._superalgebra.prefix()) + 1]
-        except ValueError:
-            prefix = prefixen[0]
-
         # This list is guaranteed to contain all independent powers,
         # because it's the maximal set of powers that could possibly
         # be independent (by a dimension argument).
@@ -165,17 +48,6 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
                                    for b in basis_vectors ]
 
         W = V.span_of_basis( V.from_vector(v) for v in basis_vectors )
-        n = len(superalgebra_basis)
-        mult_table = [[W.zero() for i in range(n)] for j in range(n)]
-        for i in range(n):
-            for j in range(n):
-                product = superalgebra_basis[i]*superalgebra_basis[j]
-                # product.to_vector() might live in a vector subspace
-                # if our parent algebra is already a subalgebra. We
-                # use V.from_vector() to make it "the right size" in
-                # that case.
-                product_vector = V.from_vector(product.to_vector())
-                mult_table[i][j] = W.coordinate_vector(product_vector)
 
         # The rank is the highest possible degree of a minimal
         # polynomial, and is bounded above by the dimension. We know
@@ -185,21 +57,11 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         # its rank too.
         rank = W.dimension()
 
-        natural_basis = tuple( b.natural_representation()
-                               for b in superalgebra_basis )
-
-
-        self._vector_space = W
-        self._superalgebra_basis = superalgebra_basis
-
-
         fdeja = super(FiniteDimensionalEuclideanJordanElementSubalgebra, self)
-        return fdeja.__init__(field,
-                              mult_table,
-                              rank,
-                              prefix=prefix,
-                              category=category,
-                              natural_basis=natural_basis)
+        return fdeja.__init__(self._superalgebra,
+                              superalgebra_basis,
+                              rank=rank,
+                              category=category)
 
 
     def _a_regular_element(self):
@@ -386,5 +248,3 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         """
         return self._vector_space
 
-
-    Element = FiniteDimensionalEuclideanJordanElementSubalgebraElement
diff --git a/mjo/eja/eja_subalgebra.py b/mjo/eja/eja_subalgebra.py
new file mode 100644 (file)
index 0000000..b07f7e2
--- /dev/null
@@ -0,0 +1,324 @@
+from sage.matrix.constructor import matrix
+
+from mjo.eja.eja_algebra import FiniteDimensionalEuclideanJordanAlgebra
+from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
+
+class FiniteDimensionalEuclideanJordanSubalgebraElement(FiniteDimensionalEuclideanJordanAlgebraElement):
+    """
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import random_eja
+
+    TESTS::
+
+    The natural representation of an element in the subalgebra is
+    the same as its natural representation in the superalgebra::
+
+        sage: set_random_seed()
+        sage: A = random_eja().random_element().subalgebra_generated_by()
+        sage: y = A.random_element()
+        sage: actual = y.natural_representation()
+        sage: expected = y.superalgebra_element().natural_representation()
+        sage: actual == expected
+        True
+
+    The left-multiplication-by operator for elements in the subalgebra
+    works like it does in the superalgebra, even if we orthonormalize
+    our basis::
+
+        sage: set_random_seed()
+        sage: x = random_eja(AA).random_element()
+        sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
+        sage: y = A.random_element()
+        sage: y.operator()(A.one()) == y
+        True
+
+    """
+
+    def superalgebra_element(self):
+        """
+        Return the object in our algebra's superalgebra that corresponds
+        to myself.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
+            ....:                                  random_eja)
+
+        EXAMPLES::
+
+            sage: J = RealSymmetricEJA(3)
+            sage: x = sum(J.gens())
+            sage: x
+            e0 + e1 + e2 + e3 + e4 + e5
+            sage: A = x.subalgebra_generated_by()
+            sage: A(x)
+            f1
+            sage: A(x).superalgebra_element()
+            e0 + e1 + e2 + e3 + e4 + e5
+
+        TESTS:
+
+        We can convert back and forth faithfully::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: A = x.subalgebra_generated_by()
+            sage: A(x).superalgebra_element() == x
+            True
+            sage: y = A.random_element()
+            sage: A(y.superalgebra_element()) == y
+            True
+
+        """
+        return self.parent().superalgebra().linear_combination(
+          zip(self.parent()._superalgebra_basis, self.to_vector()) )
+
+
+
+
+class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJordanAlgebra):
+    """
+    A subalgebra of an EJA with a given basis.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+        ....:                                  JordanSpinEJA)
+
+    TESTS:
+
+    Ensure that our generator names don't conflict with the superalgebra::
+
+        sage: J = JordanSpinEJA(3)
+        sage: J.one().subalgebra_generated_by().gens()
+        (f0,)
+        sage: J = JordanSpinEJA(3, prefix='f')
+        sage: J.one().subalgebra_generated_by().gens()
+        (g0,)
+        sage: J = JordanSpinEJA(3, prefix='b')
+        sage: J.one().subalgebra_generated_by().gens()
+        (c0,)
+
+    Ensure that we can find subalgebras of subalgebras::
+
+        sage: A = ComplexHermitianEJA(3).one().subalgebra_generated_by()
+        sage: B = A.one().subalgebra_generated_by()
+        sage: B.dimension()
+        1
+
+    """
+    def __init__(self, superalgebra, basis, rank=None, category=None):
+        self._superalgebra = superalgebra
+        V = self._superalgebra.vector_space()
+        field = self._superalgebra.base_ring()
+        if category is None:
+            category = self._superalgebra.category()
+
+        # A half-assed attempt to ensure that we don't collide with
+        # the superalgebra's prefix (ignoring the fact that there
+        # could be super-superelgrbas in scope). If possible, we
+        # try to "increment" the parent algebra's prefix, although
+        # this idea goes out the window fast because some prefixen
+        # are off-limits.
+        prefixen = [ 'f', 'g', 'h', 'a', 'b', 'c', 'd' ]
+        try:
+            prefix = prefixen[prefixen.index(self._superalgebra.prefix()) + 1]
+        except ValueError:
+            prefix = prefixen[0]
+
+        basis_vectors = [ b.to_vector() for b in basis ]
+        superalgebra_basis = [ self._superalgebra.from_vector(b)
+                               for b in basis_vectors ]
+
+        W = V.span_of_basis( V.from_vector(v) for v in basis_vectors )
+        n = len(superalgebra_basis)
+        mult_table = [[W.zero() for i in range(n)] for j in range(n)]
+        for i in range(n):
+            for j in range(n):
+                product = superalgebra_basis[i]*superalgebra_basis[j]
+                # product.to_vector() might live in a vector subspace
+                # if our parent algebra is already a subalgebra. We
+                # use V.from_vector() to make it "the right size" in
+                # that case.
+                product_vector = V.from_vector(product.to_vector())
+                mult_table[i][j] = W.coordinate_vector(product_vector)
+
+        natural_basis = tuple( b.natural_representation()
+                               for b in superalgebra_basis )
+
+
+        self._vector_space = W
+        self._superalgebra_basis = superalgebra_basis
+
+
+        fdeja = super(FiniteDimensionalEuclideanJordanSubalgebra, self)
+        return fdeja.__init__(field,
+                              mult_table,
+                              rank,
+                              prefix=prefix,
+                              category=category,
+                              natural_basis=natural_basis)
+
+
+
+    def _element_constructor_(self, elt):
+        """
+        Construct an element of this subalgebra from the given one.
+        The only valid arguments are elements of the parent algebra
+        that happen to live in this subalgebra.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import RealSymmetricEJA
+            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
+
+        EXAMPLES::
+
+            sage: J = RealSymmetricEJA(3)
+            sage: x = sum( i*J.gens()[i] for i in range(6) )
+            sage: basis = tuple( x^k for k in range(J.rank()) )
+            sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J,basis)
+            sage: [ K(x^k) for k in range(J.rank()) ]
+            [f0, f1, f2]
+
+        ::
+
+        """
+        if elt not in self.superalgebra():
+            raise ValueError("not an element of this subalgebra")
+
+        coords = self.vector_space().coordinate_vector(elt.to_vector())
+        return self.from_vector(coords)
+
+
+    def one(self):
+        """
+        Return the multiplicative identity element of this algebra.
+
+        The superclass method computes the identity element, which is
+        beyond overkill in this case: the superalgebra identity
+        restricted to this algebra is its identity. Note that we can't
+        count on the first basis element being the identity -- it migth
+        have been scaled if we orthonormalized the basis.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
+            ....:                                  random_eja)
+
+        EXAMPLES::
+
+            sage: J = RealCartesianProductEJA(5)
+            sage: J.one()
+            e0 + e1 + e2 + e3 + e4
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by()
+            sage: A.one()
+            f0
+            sage: A.one().superalgebra_element()
+            e0 + e1 + e2 + e3 + e4
+
+        TESTS:
+
+        The identity element acts like the identity over the rationals::
+
+            sage: set_random_seed()
+            sage: x = random_eja().random_element()
+            sage: A = x.subalgebra_generated_by()
+            sage: x = A.random_element()
+            sage: A.one()*x == x and x*A.one() == x
+            True
+
+        The identity element acts like the identity over the algebraic
+        reals with an orthonormal basis::
+
+            sage: set_random_seed()
+            sage: x = random_eja(AA).random_element()
+            sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
+            sage: x = A.random_element()
+            sage: A.one()*x == x and x*A.one() == x
+            True
+
+        The matrix of the unit element's operator is the identity over
+        the rationals::
+
+            sage: set_random_seed()
+            sage: x = random_eja().random_element()
+            sage: A = x.subalgebra_generated_by()
+            sage: actual = A.one().operator().matrix()
+            sage: expected = matrix.identity(A.base_ring(), A.dimension())
+            sage: actual == expected
+            True
+
+        The matrix of the unit element's operator is the identity over
+        the algebraic reals with an orthonormal basis::
+
+            sage: set_random_seed()
+            sage: x = random_eja(AA).random_element()
+            sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
+            sage: actual = A.one().operator().matrix()
+            sage: expected = matrix.identity(A.base_ring(), A.dimension())
+            sage: actual == expected
+            True
+
+        """
+        if self.dimension() == 0:
+            return self.zero()
+        else:
+            sa_one = self.superalgebra().one().to_vector()
+            sa_coords = self.vector_space().coordinate_vector(sa_one)
+            return self.from_vector(sa_coords)
+
+
+    def natural_basis_space(self):
+        """
+        Return the natural basis space of this algebra, which is identical
+        to that of its superalgebra.
+
+        This is correct "by definition," and avoids a mismatch when the
+        subalgebra is trivial (with no natural basis to infer anything
+        from) and the parent is not.
+        """
+        return self.superalgebra().natural_basis_space()
+
+
+    def superalgebra(self):
+        """
+        Return the superalgebra that this algebra was generated from.
+        """
+        return self._superalgebra
+
+
+    def vector_space(self):
+        """
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import RealSymmetricEJA
+            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
+
+        EXAMPLES::
+
+            sage: J = RealSymmetricEJA(3)
+            sage: x = J.monomial(0) + 2*J.monomial(2) + 5*J.monomial(5)
+            sage: basis = (x^0, x^1, x^2)
+            sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J,basis)
+            sage: K.vector_space()
+            Vector space of degree 6 and dimension 3 over...
+            User basis matrix:
+            [ 1  0  1  0  0  1]
+            [ 1  0  2  0  0  5]
+            [ 1  0  4  0  0 25]
+            sage: (x^0).to_vector()
+            (1, 0, 1, 0, 0, 1)
+            sage: (x^1).to_vector()
+            (1, 0, 2, 0, 0, 5)
+            sage: (x^2).to_vector()
+            (1, 0, 4, 0, 0, 25)
+
+        """
+        return self._vector_space
+
+
+    Element = FiniteDimensionalEuclideanJordanSubalgebraElement