+ sage: K2 = Cone([(1,1,1), (-1,1,1), (-1,-1,1), (1,-1,1)])
+ sage: H = set(linear_isomorphisms(K2,K2))
+ sage: G == H
+ True
+
+ Up to a positive row-scalings, the automorphism group of the
+ nonnegative orthant is the set of all permutation matrices. Only
+ the permutations (not the scalar factors) are returned; this is
+ discussed in the description of the algorithm::
+
+ sage: K1 = cones.nonnegative_orthant(3)
+ sage: set(linear_isomorphisms(K1,K1))
+ {[0 0 1]
+ [0 1 0]
+ [1 0 0],
+ [0 0 1]
+ [1 0 0]
+ [0 1 0],
+ [0 1 0]
+ [0 0 1]
+ [1 0 0],
+ [0 1 0]
+ [1 0 0]
+ [0 0 1],
+ [1 0 0]
+ [0 0 1]
+ [0 1 0],
+ [1 0 0]
+ [0 1 0]
+ [0 0 1]}