]> gitweb.michael.orlitzky.com - sage.d.git/commit
eja: normalize the real symmetric matrix basis.
authorMichael Orlitzky <michael@orlitzky.com>
Tue, 20 Aug 2019 20:46:16 +0000 (16:46 -0400)
committerMichael Orlitzky <michael@orlitzky.com>
Tue, 20 Aug 2019 20:46:16 +0000 (16:46 -0400)
commitd4abf92e1e275554019be8987c6e837dfdc40150
tree49b9dcb6a8807071bc145e0d8beff7cbad65a94d
parent801e9686b8eff405e50d9fb5cbf6f3b5a7c61117
eja: normalize the real symmetric matrix basis.

This is necessary to ensure that the default basis representation is
an isometry. When it is not, the left-multiplication operator is
self-adjoint (by the Jordan axiom), but its matrix with respect to
that basis is not. The other two matrix algebras need similar fixing.
mjo/eja/eja_algebra.py
mjo/eja/eja_element.py
mjo/eja/eja_operator.py
mjo/eja/eja_subalgebra.py