X-Git-Url: https://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2Fapply-default-acl.c;h=993b1f7649e14c50300174da1f5d87fcb534d20a;hb=f22034c7b75b7096e6ef26de7a5bc8e12a3f0b07;hp=4f7b3b06a0e1f2cc835038f5701550c57c696859;hpb=1504070cadf122c8d3de0d15a0e2fd35f81eb576;p=apply-default-acl.git diff --git a/src/apply-default-acl.c b/src/apply-default-acl.c index 4f7b3b0..993b1f7 100644 --- a/src/apply-default-acl.c +++ b/src/apply-default-acl.c @@ -1,11 +1,19 @@ +/** + * @file apply-default-acl.c + * + * @brief The entire implementation. + * + */ + /* On Linux, ftw.h needs this special voodoo to work. */ #define _XOPEN_SOURCE 500 +#define _GNU_SOURCE #include +#include /* AT_FOO constants */ #include /* nftw() et al. */ #include -#include /* dirname() */ -#include /* PATH_MAX */ +#include /* basename(), dirname() */ #include #include #include @@ -18,44 +26,85 @@ #include #include - -/* Command-line options */ -static bool no_exec_mask = false; - - -mode_t get_mode(const char* path) { - /* - * Get the mode bits from path. - */ - if (path == NULL) { +/* Most of the libacl functions return 1 for success, 0 for failure, + and -1 on error */ +#define ACL_ERROR -1 +#define ACL_FAILURE 0 +#define ACL_SUCCESS 1 + + + +/** + * @brief Get the mode bits from the given file descriptor. + * + * @param fd + * The file descriptor (which may reference a directory) whose + * mode we want. + * + * @return A mode_t (st_mode) structure containing the mode bits. + * See sys/stat.h for details. + */ +mode_t get_mode(int fd) { + if (fd <= 0) { errno = ENOENT; - return -1; + return ACL_ERROR; } struct stat s; - int result = stat(path, &s); + int result = fstat(fd, &s); if (result == 0) { return s.st_mode; } else { - /* errno will be set already by stat() */ + /* errno will be set already by lstat() */ return result; } } -bool is_regular_file(const char* path) { - /* - * Returns true if path is a regular file, false otherwise. - */ - if (path == NULL) { + +/** + * @brief Determine if the given file descriptor might refer to an + * (unsafe) hard link. + * + * @param fd + * The file descriptor whose link count we want to investigate. + * + * @return true if we are certain that @c fd does not describe a hard + * link, and false otherwise. In case of error, false is returned, + * because we are not sure that @c fd is not a hard link. + */ +bool is_hardlink_safe(int fd) { + if (fd <= 0) { + return false; + } + struct stat s; + if (fstat(fd, &s) == 0) { + return (s.st_nlink == 1 || S_ISDIR(s.st_mode)); + } + else { + return false; + } +} + + +/** + * @brief Determine whether or not the given file descriptor is for + * a regular file. + * + * @param fd + * The file descriptor to test for regular-fileness. + * + * @return true if @c fd describes a regular file, and false otherwise. + */ +bool is_regular_file(int fd) { + if (fd <= 0) { return false; } struct stat s; - int result = stat(path, &s); - if (result == 0) { + if (fstat(fd, &s) == 0) { return S_ISREG(s.st_mode); } else { @@ -63,17 +112,57 @@ bool is_regular_file(const char* path) { } } -bool is_directory(const char* path) { - /* - * Returns true if path is a directory, false otherwise. - */ + + +/** + * @brief Determine whether or not the given path is accessible. + * + * @param path + * The path to test. + * + * @return true if @c path is accessible to the current effective + * user/group, false otherwise. + */ +bool path_accessible(const char* path) { + if (path == NULL) { + return false; + } + + /* Test for access using the effective user and group rather than + the real one. */ + int flags = AT_EACCESS; + + /* Don't follow symlinks when checking for a path's existence, + since we won't follow them to set its ACLs either. */ + flags |= AT_SYMLINK_NOFOLLOW; + + /* If the path is relative, interpret it relative to the current + working directory (just like the access() system call). */ + if (faccessat(AT_FDCWD, path, F_OK, flags) == 0) { + return true; + } + else { + return false; + } +} + + + +/** + * @brief Determine whether or not the given path is a directory. + * + * @param path + * The path to test. + * + * @return true if @c path is a directory, false otherwise. + */ +bool is_path_directory(const char* path) { if (path == NULL) { return false; } struct stat s; - int result = stat(path, &s); - if (result == 0) { + if (lstat(path, &s) == 0) { return S_ISDIR(s.st_mode); } else { @@ -82,38 +171,80 @@ bool is_directory(const char* path) { } +/** + * @brief Determine whether or not the given file descriptor is for + * a directory. + * + * @param fd + * The file descriptor whose directoryness is in question. + * + * @return true if @c fd describes a directory, and false otherwise. + */ +bool is_directory(int fd) { + if (fd <= 0) { + return false; + } + struct stat s; + if (fstat(fd, &s) == 0) { + return S_ISDIR(s.st_mode); + } + else { + return false; + } +} + + + +/** + * @brief Update (or create) an entry in an @b minimal ACL. + * + * This function will not work if @c aclp contains extended + * entries. This is fine for our purposes, since we call @c wipe_acls + * on each path before applying the default to it. + * + * The assumption that there are no extended entries makes things much + * simpler. For example, we only have to update the @c ACL_USER_OBJ, + * @c ACL_GROUP_OBJ, and @c ACL_OTHER entries -- all others can simply + * be created anew. This means we don't have to fool around comparing + * named-user/group entries. + * + * @param aclp + * A pointer to the acl_t structure whose entry we want to modify. + * + * @param entry + * The new entry. If @c entry contains a user/group/other entry, we + * update the existing one. Otherwise we create a new entry. + * + * @return If there is an unexpected library error, @c ACL_ERROR is + * returned. Otherwise, @c ACL_SUCCESS. + * + */ int acl_set_entry(acl_t* aclp, acl_entry_t entry) { - /* - * Update or create the given entry. - */ acl_tag_t entry_tag; - int gt_result = acl_get_tag_type(entry, &entry_tag); - if (gt_result == -1) { + if (acl_get_tag_type(entry, &entry_tag) == ACL_ERROR) { perror("acl_set_entry (acl_get_tag_type)"); - return -1; + return ACL_ERROR; } acl_permset_t entry_permset; - int ps_result = acl_get_permset(entry, &entry_permset); - if (ps_result == -1) { + if (acl_get_permset(entry, &entry_permset) == ACL_ERROR) { perror("acl_set_entry (acl_get_permset)"); - return -1; + return ACL_ERROR; } acl_entry_t existing_entry; /* Loop through the given ACL looking for matching entries. */ int result = acl_get_entry(*aclp, ACL_FIRST_ENTRY, &existing_entry); - while (result == 1) { + while (result == ACL_SUCCESS) { acl_tag_t existing_tag = ACL_UNDEFINED_TAG; - int tag_result = acl_get_tag_type(existing_entry, &existing_tag); - if (tag_result == -1) { + if (acl_get_tag_type(existing_entry, &existing_tag) == ACL_ERROR) { perror("set_acl_tag_permset (acl_get_tag_type)"); - return -1; + return ACL_ERROR; } if (existing_tag == entry_tag) { @@ -121,21 +252,21 @@ int acl_set_entry(acl_t* aclp, entry_tag == ACL_GROUP_OBJ || entry_tag == ACL_OTHER) { /* Only update for these three since all other tags will have - been wiped. */ + been wiped. These three are guaranteed to exist, so if we + match one of them, we're allowed to return ACL_SUCCESS + below and bypass the rest of the function. */ acl_permset_t existing_permset; - int gep_result = acl_get_permset(existing_entry, &existing_permset); - if (gep_result == -1) { + if (acl_get_permset(existing_entry, &existing_permset) == ACL_ERROR) { perror("acl_set_entry (acl_get_permset)"); - return -1; + return ACL_ERROR; } - int s_result = acl_set_permset(existing_entry, entry_permset); - if (s_result == -1) { + if (acl_set_permset(existing_entry, entry_permset) == ACL_ERROR) { perror("acl_set_entry (acl_set_permset)"); - return -1; + return ACL_ERROR; } - return 1; + return ACL_SUCCESS; } } @@ -145,32 +276,35 @@ int acl_set_entry(acl_t* aclp, /* This catches both the initial acl_get_entry and the ones at the end of the loop. */ - if (result == -1) { + if (result == ACL_ERROR) { perror("acl_set_entry (acl_get_entry)"); - return -1; + return ACL_ERROR; } /* If we've made it this far, we need to add a new entry to the ACL. */ acl_entry_t new_entry; - /* We allocate memory here that we should release! */ - int c_result = acl_create_entry(aclp, &new_entry); - if (c_result == -1) { + /* The acl_create_entry() function can allocate new memory and/or + * change the location of the ACL structure entirely. When that + * happens, the value pointed to by aclp is updated, which means + * that a new acl_t gets "passed out" to our caller, eventually to + * be fed to acl_free(). In other words, we should still be freeing + * the right thing, even if the value pointed to by aclp changes. + */ + if (acl_create_entry(aclp, &new_entry) == ACL_ERROR) { perror("acl_set_entry (acl_create_entry)"); - return -1; + return ACL_ERROR; } - int st_result = acl_set_tag_type(new_entry, entry_tag); - if (st_result == -1) { + if (acl_set_tag_type(new_entry, entry_tag) == ACL_ERROR) { perror("acl_set_entry (acl_set_tag_type)"); - return -1; + return ACL_ERROR; } - int s_result = acl_set_permset(new_entry, entry_permset); - if (s_result == -1) { + if (acl_set_permset(new_entry, entry_permset) == ACL_ERROR) { perror("acl_set_entry (acl_set_permset)"); - return -1; + return ACL_ERROR; } if (entry_tag == ACL_USER || entry_tag == ACL_GROUP) { @@ -178,88 +312,104 @@ int acl_set_entry(acl_t* aclp, void* entry_qual = acl_get_qualifier(entry); if (entry_qual == (void*)NULL) { perror("acl_set_entry (acl_get_qualifier)"); - return -1; + return ACL_ERROR; } - int sq_result = acl_set_qualifier(new_entry, entry_qual); - if (sq_result == -1) { + if (acl_set_qualifier(new_entry, entry_qual) == ACL_ERROR) { perror("acl_set_entry (acl_set_qualifier)"); - return -1; + return ACL_ERROR; } } - return 1; + return ACL_SUCCESS; } -int acl_entry_count(acl_t* acl) { - /* - * Return the number of entries in acl, or -1 on error. - */ +/** + * @brief Determine the number of entries in the given ACL. + * + * @param acl + * The ACL to inspect. + * + * @return Either the non-negative number of entries in @c acl, or + * @c ACL_ERROR on error. + */ +int acl_entry_count(acl_t acl) { + acl_entry_t entry; int entry_count = 0; - int result = acl_get_entry(*acl, ACL_FIRST_ENTRY, &entry); + int result = acl_get_entry(acl, ACL_FIRST_ENTRY, &entry); - while (result == 1) { + while (result == ACL_SUCCESS) { entry_count++; - result = acl_get_entry(*acl, ACL_NEXT_ENTRY, &entry); + result = acl_get_entry(acl, ACL_NEXT_ENTRY, &entry); } - if (result == -1) { - perror("acl_is_minimal (acl_get_entry)"); - return -1; + if (result == ACL_ERROR) { + perror("acl_entry_count (acl_get_entry)"); + return ACL_ERROR; } return entry_count; } -int acl_is_minimal(acl_t* acl) { - /* An ACL is minimal if it has fewer than four entries. Return 0 for - * false, 1 for true, and -1 on error. - */ + +/** + * @brief Determine whether or not the given ACL is minimal. + * + * An ACL is minimal if it has fewer than four entries. + * + * @param acl + * The ACL whose minimality is in question. + * + * @return + * - @c ACL_SUCCESS - @c acl is minimal + * - @c ACL_FAILURE - @c acl is not minimal + * - @c ACL_ERROR - Unexpected library error + */ +int acl_is_minimal(acl_t acl) { int ec = acl_entry_count(acl); - if (ec == -1) { + + if (ec == ACL_ERROR) { perror("acl_is_minimal (acl_entry_count)"); - return -1; + return ACL_ERROR; } if (ec < 4) { - return 1; + return ACL_SUCCESS; } else { - return 0; + return ACL_FAILURE; } } -int acl_execute_masked(const char* path) { - /* Returns 1 i the given path has an ACL mask which denies - execute. Returns 0 if it does not (or if it has no ACL/mask at - all), and -1 on error. */ - - acl_t acl = acl_get_file(path, ACL_TYPE_ACCESS); - - if (acl == (acl_t)NULL) { - return 0; - } - /* Our return value. */ - int result = 0; +/** + * @brief Determine whether the given ACL's mask denies execute. + * + * @param acl + * The ACL whose mask we want to check. + * + * @return + * - @c ACL_SUCCESS - The @c acl has a mask which denies execute. + * - @c ACL_FAILURE - The @c acl has a mask which does not deny execute. + * - @c ACL_ERROR - Unexpected library error. + */ +int acl_execute_masked(acl_t acl) { acl_entry_t entry; int ge_result = acl_get_entry(acl, ACL_FIRST_ENTRY, &entry); - while (ge_result == 1) { + while (ge_result == ACL_SUCCESS) { acl_tag_t tag = ACL_UNDEFINED_TAG; - int tag_result = acl_get_tag_type(entry, &tag); - if (tag_result == -1) { + if (acl_get_tag_type(entry, &tag) == ACL_ERROR) { perror("acl_execute_masked (acl_get_tag_type)"); - result = -1; - goto cleanup; + return ACL_ERROR; } if (tag == ACL_MASK) { @@ -267,68 +417,78 @@ int acl_execute_masked(const char* path) { execute is specified. */ acl_permset_t permset; - int ps_result = acl_get_permset(entry, &permset); - if (ps_result == -1) { + if (acl_get_permset(entry, &permset) == ACL_ERROR) { perror("acl_execute_masked (acl_get_permset)"); - result = -1; - goto cleanup; + return ACL_ERROR; } int gp_result = acl_get_perm(permset, ACL_EXECUTE); - if (gp_result == -1) { + if (gp_result == ACL_ERROR) { perror("acl_execute_masked (acl_get_perm)"); - result = -1; - goto cleanup; + return ACL_ERROR; } - if (gp_result == 0) { + if (gp_result == ACL_FAILURE) { /* No execute bit set in the mask; execute not allowed. */ - return 1; + return ACL_SUCCESS; } } ge_result = acl_get_entry(acl, ACL_NEXT_ENTRY, &entry); } - cleanup: - acl_free(acl); - return result; + return ACL_FAILURE; } -int any_can_execute_or_dir(const char* path) { - /* If the given path is a directory, returns 1. Otherwise, returns 1 - * if any ACL entry has EFFECTIVE execute access, 0 if none do, and - * -1 on error. - * - * This is meant to somewhat mimic setfacl's handling of the capital - * 'X' perm, which allows execute access if the target is a - * directory or someone can already execute it. We differ in that we - * check the effective execute rather than just the execute bits. - */ - if (is_directory(path)) { +/** + * @brief Determine whether @c fd is executable (by anyone) or a + * directory. + * + * This is used as part of the heuristic to determine whether or not + * we should mask the execute bit when inheriting an ACL. If @c fd + * describes a directory, the answer is a clear-cut yes. This behavior + * is modeled after the capital 'X' perms of setfacl. + * + * If @c fd describes a file, we check the @a effective permissions, + * contrary to what setfacl does. + * + * @param fd + * The file descriptor to check. + * + * @return + * - @c ACL_SUCCESS - @c fd describes a directory, or someone has effective + execute permissions. + * - @c ACL_FAILURE - @c fd describes a regular file and nobody can execute + it. + * - @c ACL_ERROR - Unexpected library error. + */ +int any_can_execute_or_dir(int fd) { + + if (is_directory(fd)) { /* That was easy... */ - return 1; + return ACL_SUCCESS; } - acl_t acl = acl_get_file(path, ACL_TYPE_ACCESS); + acl_t acl = acl_get_fd(fd); if (acl == (acl_t)NULL) { - return 0; + perror("any_can_execute_or_dir (acl_get_file)"); + return ACL_ERROR; } /* Our return value. */ - int result = 0; + int result = ACL_FAILURE; - if (acl_is_minimal(&acl)) { - mode_t mode = get_mode(path); + if (acl_is_minimal(acl)) { + mode_t mode = get_mode(fd); if (mode & (S_IXUSR | S_IXOTH | S_IXGRP)) { - result = 1; + result = ACL_SUCCESS; goto cleanup; } else { - result = 0; + result = ACL_FAILURE; goto cleanup; } } @@ -336,27 +496,42 @@ int any_can_execute_or_dir(const char* path) { acl_entry_t entry; int ge_result = acl_get_entry(acl, ACL_FIRST_ENTRY, &entry); - while (ge_result == 1) { + while (ge_result == ACL_SUCCESS) { + /* The first thing we do is check to see if this is a mask + entry. If it is, we skip it entirely. */ + acl_tag_t tag = ACL_UNDEFINED_TAG; + + if (acl_get_tag_type(entry, &tag) == ACL_ERROR) { + perror("any_can_execute_or_dir (acl_get_tag_type)"); + result = ACL_ERROR; + goto cleanup; + } + + if (tag == ACL_MASK) { + ge_result = acl_get_entry(acl, ACL_NEXT_ENTRY, &entry); + continue; + } + + /* Ok, so it's not a mask entry. Check the execute perms. */ acl_permset_t permset; - int ps_result = acl_get_permset(entry, &permset); - if (ps_result == -1) { + if (acl_get_permset(entry, &permset) == ACL_ERROR) { perror("any_can_execute_or_dir (acl_get_permset)"); - result = -1; + result = ACL_ERROR; goto cleanup; } int gp_result = acl_get_perm(permset, ACL_EXECUTE); - if (gp_result == -1) { + if (gp_result == ACL_ERROR) { perror("any_can_execute_or_dir (acl_get_perm)"); - result = -1; + result = ACL_ERROR; goto cleanup; } - if (gp_result == 1) { - /* Only return one if this execute bit is not masked. */ - if (acl_execute_masked(path) != 1) { - result = 1; + if (gp_result == ACL_SUCCESS) { + /* Only return ACL_SUCCESS if this execute bit is not masked. */ + if (acl_execute_masked(acl) != ACL_SUCCESS) { + result = ACL_SUCCESS; goto cleanup; } } @@ -364,9 +539,9 @@ int any_can_execute_or_dir(const char* path) { ge_result = acl_get_entry(acl, ACL_NEXT_ENTRY, &entry); } - if (ge_result == -1) { + if (ge_result == ACL_ERROR) { perror("any_can_execute_or_dir (acl_get_entry)"); - result = -1; + result = ACL_ERROR; goto cleanup; } @@ -376,127 +551,166 @@ int any_can_execute_or_dir(const char* path) { } -int inherit_default_acl(const char* path, const char* parent) { - /* Inherit the default ACL from parent to path. This overwrites any - * existing default ACL. Returns 1 for success, 0 for failure, and - * -1 on error. - */ - /* Our return value. */ - int result = 1; +/** + * @brief Set @c acl as the default ACL on @c path if it's a directory. + * + * This overwrites any existing default ACL on @c path. If no default + * ACL exists, then one is created. If @c path is not a directory, we + * return ACL_FAILURE but no error is raised. + * + * @param path + * The target directory whose ACL we wish to replace or create. + * + * @param acl + * The ACL to set as default on @c path. + * + * @return + * - @c ACL_SUCCESS - The default ACL was assigned successfully. + * - @c ACL_FAILURE - If @c path is not a directory. + * - @c ACL_ERROR - Unexpected library error. + */ +int assign_default_acl(const char* path, acl_t acl) { if (path == NULL) { errno = ENOENT; - return -1; - } - - if (!is_directory(path) || !is_directory(parent)) { - return 0; + return ACL_ERROR; } - acl_t parent_acl = acl_get_file(parent, ACL_TYPE_DEFAULT); - if (parent_acl == (acl_t)NULL) { - return 0; + if (!is_path_directory(path)) { + return ACL_FAILURE; } - acl_t path_acl = acl_dup(parent_acl); + /* Our return value; success unless something bad happens. */ + int result = ACL_SUCCESS; + acl_t path_acl = acl_dup(acl); if (path_acl == (acl_t)NULL) { - perror("inherit_default_acl (acl_dup)"); - acl_free(parent_acl); - return -1; + perror("assign_default_acl (acl_dup)"); + return ACL_ERROR; /* Nothing to clean up in this case. */ } - int sf_result = acl_set_file(path, ACL_TYPE_DEFAULT, path_acl); - if (sf_result == -1) { - perror("inherit_default_acl (acl_set_file)"); - result = -1; - goto cleanup; + if (acl_set_file(path, ACL_TYPE_DEFAULT, path_acl) == ACL_ERROR) { + perror("assign_default_acl (acl_set_file)"); + result = ACL_ERROR; } - cleanup: acl_free(path_acl); return result; } -int wipe_acls(const char* path) { - /* Remove ACL_USER, ACL_GROUP, and ACL_MASK entries from - path. Returns 1 for success, 0 for failure, and -1 on error. */ - if (path == NULL) { - errno = ENOENT; - return -1; +/** + * @brief Remove all @c ACL_TYPE_ACCESS entries from the given file + * descriptor, leaving the UNIX permission bits. + * + * @param fd + * The file descriptor whose ACLs we want to wipe. + * + * @return + * - @c ACL_SUCCESS - The ACLs were wiped successfully, or none + * existed in the first place. + * - @c ACL_ERROR - Unexpected library error. + */ +int wipe_acls(int fd) { + /* Initialize an empty ACL, and then overwrite the one on "fd" with it. */ + acl_t empty_acl = acl_init(0); + + if (empty_acl == (acl_t)NULL) { + perror("wipe_acls (acl_init)"); + return ACL_ERROR; } - /* Finally, remove individual named/mask entries. */ - acl_t acl = acl_get_file(path, ACL_TYPE_ACCESS); - if (acl == (acl_t)NULL) { - perror("wipe_acls (acl_get_file)"); - return -1; + if (acl_set_fd(fd, empty_acl) == ACL_ERROR) { + perror("wipe_acls (acl_set_fd)"); + acl_free(empty_acl); + return ACL_ERROR; } - /* Our return value. */ - int result = 1; + acl_free(empty_acl); + return ACL_SUCCESS; +} - acl_entry_t entry; - int ge_result = acl_get_entry(acl, ACL_FIRST_ENTRY, &entry); - while (ge_result == 1) { - int d_result = acl_delete_entry(acl, entry); - if (d_result == -1) { - perror("wipe_acls (acl_delete_entry)"); - result = -1; - goto cleanup; - } - ge_result = acl_get_entry(acl, ACL_NEXT_ENTRY, &entry); - } +/** + * @brief Apply parent default ACL to a path. + * + * This overwrites any existing ACLs on @c path. + * + * @param path + * The path whose ACL we would like to reset to its default. + * + * @param no_exec_mask + * The value (either true or false) of the --no-exec-mask flag. + * + * @return + * - @c ACL_SUCCESS - The parent default ACL was inherited successfully. + * - @c ACL_FAILURE - The target path is not a regular file/directory, + * or the parent of @c path is not a directory. + * - @c ACL_ERROR - Unexpected library error. + */ +int apply_default_acl(const char* path, bool no_exec_mask) { - /* Catches the first acl_get_entry as well as the ones at the end of - the loop. */ - if (ge_result == -1) { - perror("wipe_acls (acl_get_entry)"); - result = -1; - goto cleanup; + if (path == NULL) { + errno = ENOENT; + return ACL_ERROR; } - int sf_result = acl_set_file(path, ACL_TYPE_ACCESS, acl); - if (sf_result == -1) { - perror("wipe_acls (acl_set_file)"); - result = -1; - goto cleanup; - } + /* Define these next three variables here because we may have to + * jump to the cleanup routine which expects them to exist. + */ - cleanup: - acl_free(acl); - return result; -} + /* Our return value. */ + int result = ACL_SUCCESS; + /* The default ACL on path's parent directory */ + acl_t defacl = (acl_t)NULL; -int apply_default_acl(const char* path) { - /* Really apply the default ACL by looping through it. Returns one - * for success, zero for failure (i.e. no ACL), and -1 on unexpected - * errors. + /* The file descriptor corresponding to "path" */ + int fd = 0; + /* Split "path" into base/dirname parts to be used with openat(). + * We duplicate the strings involved because dirname/basename mangle + * their arguments. */ - if (path == NULL) { - return 0; + char* path_copy = strdup(path); + if (path_copy == NULL) { + perror("apply_default_acl (strdup)"); + return ACL_ERROR; } + char* parent = dirname(path_copy); - if (!is_regular_file(path) && !is_directory(path)) { - return 0; + fd = open(path, O_NOFOLLOW); + if (fd == -1) { + if (errno == ELOOP) { + result = ACL_FAILURE; /* hit a symlink */ + goto cleanup; + } + else { + perror("apply_default_acl (open fd)"); + result = ACL_ERROR; + goto cleanup; + } } - /* dirname mangles its argument */ - char path_copy[PATH_MAX]; - strncpy(path_copy, path, PATH_MAX-1); - path_copy[PATH_MAX-1] = 0; - char* parent = dirname(path_copy); - if (!is_directory(parent)) { - /* Make sure dirname() did what we think it did. */ - return 0; + /* Refuse to operate on hard links, which can be abused by an + * attacker to trick us into changing the ACL on a file we didn't + * intend to; namely the "target" of the hard link. There is TOCTOU + * race condition here, but the window is as small as possible + * between when we open the file descriptor (look above) and when we + * fstat it. + */ + if (!is_hardlink_safe(fd)) { + result = ACL_FAILURE; + goto cleanup; + } + + if (!is_regular_file(fd) && !is_directory(fd)) { + result = ACL_FAILURE; + goto cleanup; } /* Default to not masking the exec bit; i.e. applying the default @@ -505,68 +719,65 @@ int apply_default_acl(const char* path) { bool allow_exec = true; if (!no_exec_mask) { - int ace_result = any_can_execute_or_dir(path); + int ace_result = any_can_execute_or_dir(fd); + + if (ace_result == ACL_ERROR) { + perror("apply_default_acl (any_can_execute_or_dir)"); + result = ACL_ERROR; + goto cleanup; + } - if (ace_result == -1) { - perror("apply_default_acl (any_can_execute_or_dir)"); - return -1; - } allow_exec = (bool)ace_result; } - acl_t defacl = acl_get_file(parent, ACL_TYPE_DEFAULT); + defacl = acl_get_file(parent, ACL_TYPE_DEFAULT); if (defacl == (acl_t)NULL) { perror("apply_default_acl (acl_get_file)"); - return -1; + result = ACL_ERROR; + goto cleanup; } - /* Our return value. */ - int result = 1; - - int wipe_result = wipe_acls(path); - if (wipe_result == -1) { + if (wipe_acls(fd) == ACL_ERROR) { perror("apply_default_acl (wipe_acls)"); - result = -1; + result = ACL_ERROR; goto cleanup; } /* Do this after wipe_acls(), otherwise we'll overwrite the wiped ACL with this one. */ - acl_t acl = acl_get_file(path, ACL_TYPE_ACCESS); + acl_t acl = acl_get_fd(fd); if (acl == (acl_t)NULL) { - perror("apply_default_acl (acl_get_file)"); - return -1; + perror("apply_default_acl (acl_get_fd)"); + result = ACL_ERROR; + goto cleanup; } /* If it's a directory, inherit the parent's default. */ - int inherit_result = inherit_default_acl(path, parent); - if (inherit_result == -1) { - perror("apply_default_acl (inherit_acls)"); - result = -1; + if (assign_default_acl(path, defacl) == ACL_ERROR) { + perror("apply_default_acl (assign_default_acl)"); + result = ACL_ERROR; goto cleanup; } acl_entry_t entry; int ge_result = acl_get_entry(defacl, ACL_FIRST_ENTRY, &entry); - while (ge_result == 1) { + while (ge_result == ACL_SUCCESS) { acl_tag_t tag = ACL_UNDEFINED_TAG; - int tag_result = acl_get_tag_type(entry, &tag); - if (tag_result == -1) { + if (acl_get_tag_type(entry, &tag) == ACL_ERROR) { perror("apply_default_acl (acl_get_tag_type)"); - result = -1; + result = ACL_ERROR; goto cleanup; } /* We've got an entry/tag from the default ACL. Get its permset. */ acl_permset_t permset; - int ps_result = acl_get_permset(entry, &permset); - if (ps_result == -1) { + if (acl_get_permset(entry, &permset) == ACL_ERROR) { perror("apply_default_acl (acl_get_permset)"); - result = -1; + result = ACL_ERROR; goto cleanup; } @@ -580,27 +791,39 @@ int apply_default_acl(const char* path) { /* The mask doesn't affect acl_user_obj, acl_group_obj (in minimal ACLs) or acl_other entries, so if execute should be masked, we have to do it manually. */ - int d_result = acl_delete_perm(permset, ACL_EXECUTE); - if (d_result == -1) { + if (acl_delete_perm(permset, ACL_EXECUTE) == ACL_ERROR) { perror("apply_default_acl (acl_delete_perm)"); - result = -1; + result = ACL_ERROR; goto cleanup; } - int sp_result = acl_set_permset(entry, permset); - if (sp_result == -1) { + if (acl_set_permset(entry, permset) == ACL_ERROR) { perror("apply_default_acl (acl_set_permset)"); - result = -1; + result = ACL_ERROR; goto cleanup; } } } - /* Finally, add the permset to the access ACL. */ - int set_result = acl_set_entry(&acl, entry); - if (set_result == -1) { + /* Finally, add the permset to the access ACL. It's actually + * important that we pass in the address of "acl" here, and not + * "acl" itself. Why? The call to acl_create_entry() within + * acl_set_entry() can allocate new memory for the entry. + * Sometimes that can be done in-place, in which case everything + * is cool and the new memory gets released when we call + * acl_free(acl). + * + * But occasionally, the whole ACL structure will have to be moved + * in order to allocate the extra space. When that happens, + * acl_create_entry() modifies the pointer it was passed (in this + * case, &acl) to point to the new location. We want to call + * acl_free() on the new location, and since acl_free() gets + * called right here, we need acl_create_entry() to update the + * value of "acl". To do that, it needs the address of "acl". + */ + if (acl_set_entry(&acl, entry) == ACL_ERROR) { perror("apply_default_acl (acl_set_entry)"); - result = -1; + result = ACL_ERROR; goto cleanup; } @@ -609,29 +832,40 @@ int apply_default_acl(const char* path) { /* Catches the first acl_get_entry as well as the ones at the end of the loop. */ - if (ge_result == -1) { + if (ge_result == ACL_ERROR) { perror("apply_default_acl (acl_get_entry)"); - result = -1; + result = ACL_ERROR; goto cleanup; } - int sf_result = acl_set_file(path, ACL_TYPE_ACCESS, acl); - if (sf_result == -1) { - perror("apply_default_acl (acl_set_file)"); - result = -1; + if (acl_set_fd(fd, acl) == ACL_ERROR) { + perror("apply_default_acl (acl_set_fd)"); + result = ACL_ERROR; goto cleanup; } cleanup: - acl_free(defacl); + free(path_copy); + if (defacl != (acl_t)NULL) { + acl_free(defacl); + } + if (fd >= 0 && close(fd) == -1) { + perror("apply_default_acl (close)"); + result = ACL_ERROR; + } return result; } -void usage(char* program_name) { - /* - * Print usage information. - */ + +/** + * @brief Display program usage information. + * + * @param program_name + * The program name to use in the output. + * + */ +void usage(const char* program_name) { printf("Apply any applicable default ACLs to the given files or " "directories.\n\n"); printf("Usage: %s [flags] [ [ ...]]\n\n", @@ -645,43 +879,96 @@ void usage(char* program_name) { } +/** + * @brief Wrapper around @c apply_default_acl() for use with @c nftw(). + * + * For parameter information, see the @c nftw man page. + * + * @return If the ACL was applied to @c target successfully, we return + * @c FTW_CONTINUE to signal to @ nftw() that we should proceed onto + * the next file or directory. Otherwise, we return @c FTW_STOP to + * signal failure. + * + */ int apply_default_acl_nftw(const char *target, const struct stat *s, int info, struct FTW *ftw) { - /* A wrapper around the apply_default_acl() function for use with - * nftw(). We need to adjust the return value so that nftw() doesn't - * think we've failed. - */ - bool reapp_result = apply_default_acl(target); - if (reapp_result) { - return 0; + + if (apply_default_acl(target, false)) { + return FTW_CONTINUE; } else { - return 1; + return FTW_STOP; } } -bool apply_default_acl_recursive(const char *target) { - /* Attempt to apply default ACLs recursively. If target is a - * directory, we recurse through its entries. If not, we just - * apply the default ACL to target. - * - * We ignore symlinks for consistency with chmod -r. - * - */ - if (!is_directory(target)) { - return apply_default_acl(target); + +/** + * @brief Wrapper around @c apply_default_acl() for use with @c nftw(). + * + * This is identical to @c apply_default_acl_nftw(), except it passes + * @c true to @c apply_default_acl() as its no_exec_mask argument. + * + */ +int apply_default_acl_nftw_x(const char *target, + const struct stat *s, + int info, + struct FTW *ftw) { + + if (apply_default_acl(target, true)) { + return FTW_CONTINUE; + } + else { + return FTW_STOP; + } +} + + + +/** + * @brief Recursive version of @c apply_default_acl(). + * + * If @c target is a directory, we use @c nftw() to call @c + * apply_default_acl() recursively on all of its children. Otherwise, + * we just delegate to @c apply_default_acl(). + * + * We ignore symlinks for consistency with chmod -r. + * + * @param target + * The root (path) of the recursive application. + * + * @param no_exec_mask + * The value (either true or false) of the --no-exec-mask flag. + * + * @return + * If @c target is not a directory, we return the result of + * calling @c apply_default_acl() on @c target. Otherwise, we convert + * the return value of @c nftw(). If @c nftw() succeeds (returns 0), + * then we return @c true. Otherwise, we return @c false. + * \n\n + * If there is an error, it will be reported via @c perror, but + * we still return @c false. + */ +bool apply_default_acl_recursive(const char *target, bool no_exec_mask) { + + if (!is_path_directory(target)) { + return apply_default_acl(target, no_exec_mask); } int max_levels = 256; int flags = FTW_PHYS; /* Don't follow links. */ - int nftw_result = nftw(target, - apply_default_acl_nftw, - max_levels, - flags); + /* There are two separate functions that could be passed to + nftw(). One passes no_exec_mask = true to apply_default_acl(), + and the other passes no_exec_mask = false. Since the function we + pass to nftw() cannot have parameters, we have to create separate + options and make the decision here. */ + int (*fn)(const char *, const struct stat *, int, struct FTW *) = NULL; + fn = no_exec_mask ? apply_default_acl_nftw_x : apply_default_acl_nftw; + + int nftw_result = nftw(target, fn, max_levels, flags); if (nftw_result == 0) { /* Success */ @@ -700,17 +987,24 @@ bool apply_default_acl_recursive(const char *target) { } + +/** + * @brief Call apply_default_acl (possibly recursively) on each + * command-line argument. + * + * @return Either @c EXIT_FAILURE or @c EXIT_SUCCESS. If everything + * goes as expected, we return @c EXIT_SUCCESS. Otherwise, we return + * @c EXIT_FAILURE. + */ int main(int argc, char* argv[]) { - /* - * Call apply_default_acl on each command-line argument. - */ + if (argc < 2) { usage(argv[0]); return EXIT_FAILURE; } bool recursive = false; - /* bool no_exec_mask is declared static/global */ + bool no_exec_mask = false; struct option long_options[] = { /* These options set a flag. */ @@ -746,12 +1040,23 @@ int main(int argc, char* argv[]) { const char* target = argv[arg_index]; bool reapp_result = false; + /* Make sure we can access the given path before we go out of our + * way to please it. Doing this check outside of + * apply_default_acl() lets us spit out a better error message for + * typos, too. + */ + if (!path_accessible(target)) { + fprintf(stderr, "%s: %s: No such file or directory\n", argv[0], target); + result = EXIT_FAILURE; + continue; + } + if (recursive) { - reapp_result = apply_default_acl_recursive(target); + reapp_result = apply_default_acl_recursive(target, no_exec_mask); } else { - /* It's either normal file, or we're not operating recursively. */ - reapp_result = apply_default_acl(target); + /* It's either a normal file, or we're not operating recursively. */ + reapp_result = apply_default_acl(target, no_exec_mask); } if (!reapp_result) {