X-Git-Url: https://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=src%2FTetrahedron.hs;h=87bfd5e8a65b8621179d480bd636a1feeed6854b;hb=fe1984d347cee4262a3af2117fd402bb603fd0ce;hp=1f7c22b355c0392f26988a1d9c315e63fee2d68e;hpb=b2e1c440b9b1bb99ae564d6600230bbd1f7d204c;p=spline3.git diff --git a/src/Tetrahedron.hs b/src/Tetrahedron.hs index 1f7c22b..87bfd5e 100644 --- a/src/Tetrahedron.hs +++ b/src/Tetrahedron.hs @@ -1,25 +1,55 @@ -module Tetrahedron +-- The local "coefficient" function defined within the "c" function +-- pattern matches on a bunch of integers, but doesn't handle the +-- "otherwise" case for performance reasons. +{-# OPTIONS_GHC -Wno-incomplete-patterns #-} +{-# LANGUAGE BangPatterns #-} + +module Tetrahedron ( + Tetrahedron(..), + b0, -- Cube test + b1, -- Cube test + b2, -- Cube test + b3, -- Cube test + barycenter, + c, + polynomial, + tetrahedron_properties, + tetrahedron_tests, + volume ) -- Cube test where -import Numeric.LinearAlgebra hiding (i, scale) -import Prelude hiding (LT) -import Test.QuickCheck (Arbitrary(..), Gen) - -import Cardinal -import Comparisons (nearly_ge) -import FunctionValues -import Misc (factorial) -import Point -import RealFunction -import ThreeDimensional - -data Tetrahedron = Tetrahedron { fv :: FunctionValues, - v0 :: Point, - v1 :: Point, - v2 :: Point, - v3 :: Point, - precomputed_volume :: Double } - deriving (Eq) +import Data.Vector ( singleton, snoc ) +import qualified Data.Vector as V ( sum ) +import Test.Tasty ( TestTree, testGroup ) +import Test.Tasty.HUnit ( Assertion, assertEqual, testCase ) +import Test.Tasty.QuickCheck ( + Arbitrary( arbitrary ), + Gen, + Property, + (==>), + testProperty ) + +import Comparisons ( (~=) ) +import FunctionValues ( + FunctionValues( front, back, left, right, top, down, front_left, + front_right, front_down, front_top, back_left, back_right, + back_down, back_top, left_down, left_top, right_down, + right_top, front_left_down, front_left_top, + front_right_down, front_right_top, interior ), + empty_values ) +import Misc ( factorial ) +import Point ( Point(Point), scale ) +import RealFunction ( RealFunction, cmult, fexp ) + +data Tetrahedron = + Tetrahedron { function_values :: FunctionValues, + v0 :: !Point, + v1 :: !Point, + v2 :: !Point, + v3 :: !Point, + precomputed_volume :: !Double + } + deriving (Eq) instance Arbitrary Tetrahedron where @@ -29,6 +59,7 @@ instance Arbitrary Tetrahedron where rnd_v2 <- arbitrary :: Gen Point rnd_v3 <- arbitrary :: Gen Point rnd_fv <- arbitrary :: Gen FunctionValues + -- We can't assign an incorrect precomputed volume, -- so we have to calculate the correct one here. let t' = Tetrahedron rnd_fv rnd_v0 rnd_v1 rnd_v2 rnd_v3 0 @@ -38,77 +69,55 @@ instance Arbitrary Tetrahedron where instance Show Tetrahedron where show t = "Tetrahedron:\n" ++ - " fv: " ++ (show (fv t)) ++ "\n" ++ + " function_values: " ++ (show (function_values t)) ++ "\n" ++ " v0: " ++ (show (v0 t)) ++ "\n" ++ " v1: " ++ (show (v1 t)) ++ "\n" ++ " v2: " ++ (show (v2 t)) ++ "\n" ++ " v3: " ++ (show (v3 t)) ++ "\n" -instance ThreeDimensional Tetrahedron where - center t = ((v0 t) + (v1 t) + (v2 t) + (v3 t)) `scale` (1/4) - contains_point t p = - b0_unscaled `nearly_ge` 0 && - b1_unscaled `nearly_ge` 0 && - b2_unscaled `nearly_ge` 0 && - b3_unscaled `nearly_ge` 0 - where - -- Drop the useless division and volume calculation that we - -- would do if we used the regular b0,..b3 functions. - b0_unscaled :: Double - b0_unscaled = volume inner_tetrahedron - where inner_tetrahedron = t { v0 = p } - - b1_unscaled :: Double - b1_unscaled = volume inner_tetrahedron - where inner_tetrahedron = t { v1 = p } - - b2_unscaled :: Double - b2_unscaled = volume inner_tetrahedron - where inner_tetrahedron = t { v2 = p } +-- | Find the barycenter of the given tetrahedron. +-- We just average the four vertices. +barycenter :: Tetrahedron -> Point +barycenter (Tetrahedron _ v0' v1' v2' v3' _) = + (v0' + v1' + v2' + v3') `scale` (1/4) - b3_unscaled :: Double - b3_unscaled = volume inner_tetrahedron - where inner_tetrahedron = t { v3 = p } +{-# INLINE polynomial #-} polynomial :: Tetrahedron -> (RealFunction Point) polynomial t = - sum [ (c t i j k l) `cmult` (beta t i j k l) | i <- [0..3], - j <- [0..3], - k <- [0..3], - l <- [0..3], - i + j + k + l == 3] - - --- | Returns the domain point of t with indices i,j,k,l. --- Simply an alias for the domain_point function. -xi :: Tetrahedron -> Int -> Int -> Int -> Int -> Point -xi = domain_point - --- | Returns the domain point of t with indices i,j,k,l. -domain_point :: Tetrahedron -> Int -> Int -> Int -> Int -> Point -domain_point t i j k l - | i + j + k + l == 3 = weighted_sum `scale` (1/3) - | otherwise = error "domain point index out of bounds" - where - v0' = (v0 t) `scale` (fromIntegral i) - v1' = (v1 t) `scale` (fromIntegral j) - v2' = (v2 t) `scale` (fromIntegral k) - v3' = (v3 t) `scale` (fromIntegral l) - weighted_sum = v0' + v1' + v2' + v3' + V.sum $ singleton ((c t 0 0 0 3) `cmult` (beta t 0 0 0 3)) `snoc` + ((c t 0 0 1 2) `cmult` (beta t 0 0 1 2)) `snoc` + ((c t 0 0 2 1) `cmult` (beta t 0 0 2 1)) `snoc` + ((c t 0 0 3 0) `cmult` (beta t 0 0 3 0)) `snoc` + ((c t 0 1 0 2) `cmult` (beta t 0 1 0 2)) `snoc` + ((c t 0 1 1 1) `cmult` (beta t 0 1 1 1)) `snoc` + ((c t 0 1 2 0) `cmult` (beta t 0 1 2 0)) `snoc` + ((c t 0 2 0 1) `cmult` (beta t 0 2 0 1)) `snoc` + ((c t 0 2 1 0) `cmult` (beta t 0 2 1 0)) `snoc` + ((c t 0 3 0 0) `cmult` (beta t 0 3 0 0)) `snoc` + ((c t 1 0 0 2) `cmult` (beta t 1 0 0 2)) `snoc` + ((c t 1 0 1 1) `cmult` (beta t 1 0 1 1)) `snoc` + ((c t 1 0 2 0) `cmult` (beta t 1 0 2 0)) `snoc` + ((c t 1 1 0 1) `cmult` (beta t 1 1 0 1)) `snoc` + ((c t 1 1 1 0) `cmult` (beta t 1 1 1 0)) `snoc` + ((c t 1 2 0 0) `cmult` (beta t 1 2 0 0)) `snoc` + ((c t 2 0 0 1) `cmult` (beta t 2 0 0 1)) `snoc` + ((c t 2 0 1 0) `cmult` (beta t 2 0 1 0)) `snoc` + ((c t 2 1 0 0) `cmult` (beta t 2 1 0 0)) `snoc` + ((c t 3 0 0 0) `cmult` (beta t 3 0 0 0)) + -- | The Bernstein polynomial on t with indices i,j,k,l. Denoted by a -- capital 'B' in the Sorokina/Zeilfelder paper. beta :: Tetrahedron -> Int -> Int -> Int -> Int -> (RealFunction Point) -beta t i j k l - | (i + j + k + l == 3) = - coefficient `cmult` (b0_term * b1_term * b2_term * b3_term) - | otherwise = error "basis function index out of bounds" +beta t i j k l = + coefficient `cmult` (b0_term * b1_term * b2_term * b3_term) where denominator = (factorial i)*(factorial j)*(factorial k)*(factorial l) - coefficient = 6 / (fromIntegral denominator) + coefficient = (6 / (fromIntegral denominator)) :: Double b0_term = (b0 t) `fexp` i b1_term = (b1 t) `fexp` j b2_term = (b2 t) `fexp` k @@ -118,157 +127,178 @@ beta t i j k l -- | The coefficient function. c t i j k l returns the coefficient -- c_ijkl with respect to the tetrahedron t. The definition uses -- pattern matching to mimic the definitions given in Sorokina and --- Zeilfelder, pp. 84-86. If incorrect indices are supplied, the --- function will simply error. +-- Zeilfelder, pp. 84-86. If incorrect indices are supplied, the world +-- will end. This is for performance reasons. c :: Tetrahedron -> Int -> Int -> Int -> Int -> Double -c t 0 0 3 0 = eval (fv t) $ - (1/8) * (I + F + L + T + LT + FL + FT + FLT) - -c t 0 0 0 3 = eval (fv t) $ - (1/8) * (I + F + R + T + RT + FR + FT + FRT) - -c t 0 0 2 1 = eval (fv t) $ - (5/24)*(I + F + T + FT) + - (1/24)*(L + FL + LT + FLT) - -c t 0 0 1 2 = eval (fv t) $ - (5/24)*(I + F + T + FT) + - (1/24)*(R + FR + RT + FRT) - -c t 0 1 2 0 = eval (fv t) $ - (5/24)*(I + F) + - (1/8)*(L + T + FL + FT) + - (1/24)*(LT + FLT) - -c t 0 1 0 2 = eval (fv t) $ - (5/24)*(I + F) + - (1/8)*(R + T + FR + FT) + - (1/24)*(RT + FRT) - -c t 0 1 1 1 = eval (fv t) $ - (13/48)*(I + F) + - (7/48)*(T + FT) + - (1/32)*(L + R + FL + FR) + - (1/96)*(LT + RT + FLT + FRT) - -c t 0 2 1 0 = eval (fv t) $ - (13/48)*(I + F) + - (17/192)*(L + T + FL + FT) + - (1/96)*(LT + FLT) + - (1/64)*(R + D + FR + FD) + - (1/192)*(RT + LD + FRT + FLD) - -c t 0 2 0 1 = eval (fv t) $ - (13/48)*(I + F) + - (17/192)*(R + T + FR + FT) + - (1/96)*(RT + FRT) + - (1/64)*(L + D + FL + FD) + - (1/192)*(RD + LT + FLT + FRD) - -c t 0 3 0 0 = eval (fv t) $ - (13/48)*(I + F) + - (5/96)*(L + R + T + D + FL + FR + FT + FD) + - (1/192)*(RT + RD + LT + LD + FRT + FRD + FLT + FLD) - -c t 1 0 2 0 = eval (fv t) $ - (1/4)*I + - (1/6)*(F + L + T) + - (1/12)*(LT + FL + FT) - -c t 1 0 0 2 = eval (fv t) $ - (1/4)*I + - (1/6)*(F + R + T) + - (1/12)*(RT + FR + FT) - -c t 1 0 1 1 = eval (fv t) $ - (1/3)*I + - (5/24)*(F + T) + - (1/12)*FT + - (1/24)*(L + R) + - (1/48)*(LT + RT + FL + FR) - -c t 1 1 1 0 = eval (fv t) $ - (1/3)*I + - (5/24)*F + - (1/8)*(L + T) + - (5/96)*(FL + FT) + - (1/48)*(D + R + LT) + - (1/96)*(FD + LD + RT + FR) - -c t 1 1 0 1 = eval (fv t) $ - (1/3)*I + - (5/24)*F + - (1/8)*(R + T) + - (5/96)*(FR + FT) + - (1/48)*(D + L + RT) + - (1/96)*(FD + LT + RD + FL) - -c t 1 2 0 0 = eval (fv t) $ - (1/3)*I + - (5/24)*F + - (7/96)*(L + R + T + D) + - (1/32)*(FL + FR + FT + FD) + - (1/96)*(RT + RD + LT + LD) - -c t 2 0 1 0 = eval (fv t) $ - (3/8)*I + - (7/48)*(F + T + L) + - (1/48)*(R + D + B + LT + FL + FT) + - (1/96)*(RT + BT + FR + FD + LD + BL) - -c t 2 0 0 1 = eval (fv t) $ - (3/8)*I + - (7/48)*(F + T + R) + - (1/48)*(L + D + B + RT + FR + FT) + - (1/96)*(LT + BT + FL + FD + RD + BR) - -c t 2 1 0 0 = eval (fv t) $ - (3/8)*I + - (1/12)*(T + R + L + D) + - (1/64)*(FT + FR + FL + FD) + - (7/48)*F + - (1/48)*B + - (1/96)*(RT + LD + LT + RD) + - (1/192)*(BT + BR + BL + BD) - -c t 3 0 0 0 = eval (fv t) $ - (3/8)*I + - (1/12)*(T + F + L + R + D + B) + - (1/96)*(LT + FL + FT + RT + BT + FR) + - (1/96)*(FD + LD + BD + BR + RD + BL) - -c _ _ _ _ _ = error "coefficient index out of bounds" - - - --- | The matrix used in the tetrahedron volume calculation as given in --- Lai & Schumaker, Definition 15.4, page 436. -vol_matrix :: Tetrahedron -> Matrix Double -vol_matrix t = (4><4) - [1, 1, 1, 1, - x1, x2, x3, x4, - y1, y2, y3, y4, - z1, z2, z3, z4 ] - where - (x1, y1, z1) = v0 t - (x2, y2, z2) = v1 t - (x3, y3, z3) = v2 t - (x4, y4, z4) = v3 t +c !t !i !j !k !l = + coefficient i j k l + where + fvs = function_values t + f = front fvs + b = back fvs + r = right fvs + l' = left fvs + t' = top fvs + d = down fvs + fl = front_left fvs + fr = front_right fvs + fd = front_down fvs + ft = front_top fvs + bl = back_left fvs + br = back_right fvs + bd = back_down fvs + bt = back_top fvs + ld = left_down fvs + lt = left_top fvs + rd = right_down fvs + rt = right_top fvs + fld = front_left_down fvs + flt = front_left_top fvs + frd = front_right_down fvs + frt = front_right_top fvs + i' = interior fvs + + coefficient :: Int -> Int -> Int -> Int -> Double + coefficient 0 0 3 0 = + (1/8) * (i' + f + l' + t' + lt + fl + ft + flt) + + coefficient 0 0 0 3 = + (1/8) * (i' + f + r + t' + rt + fr + ft + frt) + + coefficient 0 0 2 1 = + (5/24)*(i' + f + t' + ft) + (1/24)*(l' + fl + lt + flt) + + coefficient 0 0 1 2 = + (5/24)*(i' + f + t' + ft) + (1/24)*(r + fr + rt + frt) + + coefficient 0 1 2 0 = + (5/24)*(i' + f) + (1/8)*(l' + t' + fl + ft) + + (1/24)*(lt + flt) + + coefficient 0 1 0 2 = + (5/24)*(i' + f) + (1/8)*(r + t' + fr + ft) + + (1/24)*(rt + frt) + + coefficient 0 1 1 1 = + (13/48)*(i' + f) + (7/48)*(t' + ft) + + (1/32)*(l' + r + fl + fr) + + (1/96)*(lt + rt + flt + frt) + + coefficient 0 2 1 0 = + (13/48)*(i' + f) + (17/192)*(l' + t' + fl + ft) + + (1/96)*(lt + flt) + + (1/64)*(r + d + fr + fd) + + (1/192)*(rt + ld + frt + fld) + + coefficient 0 2 0 1 = + (13/48)*(i' + f) + (17/192)*(r + t' + fr + ft) + + (1/96)*(rt + frt) + + (1/64)*(l' + d + fl + fd) + + (1/192)*(rd + lt + flt + frd) + + coefficient 0 3 0 0 = + (13/48)*(i' + f) + (5/96)*(l' + r + t' + d + fl + fr + ft + fd) + + (1/192)*(rt + rd + lt + ld + frt + frd + flt + fld) + + coefficient 1 0 2 0 = + (1/4)*i' + (1/6)*(f + l' + t') + + (1/12)*(lt + fl + ft) + + coefficient 1 0 0 2 = + (1/4)*i' + (1/6)*(f + r + t') + + (1/12)*(rt + fr + ft) + + coefficient 1 0 1 1 = + (1/3)*i' + (5/24)*(f + t') + + (1/12)*ft + + (1/24)*(l' + r) + + (1/48)*(lt + rt + fl + fr) + + coefficient 1 1 1 0 = + (1/3)*i' + (5/24)*f + + (1/8)*(l' + t') + + (5/96)*(fl + ft) + + (1/48)*(d + r + lt) + + (1/96)*(fd + ld + rt + fr) + + coefficient 1 1 0 1 = + (1/3)*i' + (5/24)*f + + (1/8)*(r + t') + + (5/96)*(fr + ft) + + (1/48)*(d + l' + rt) + + (1/96)*(fd + lt + rd + fl) + + coefficient 1 2 0 0 = + (1/3)*i' + (5/24)*f + + (7/96)*(l' + r + t' + d) + + (1/32)*(fl + fr + ft + fd) + + (1/96)*(rt + rd + lt + ld) + + coefficient 2 0 1 0 = + (3/8)*i' + (7/48)*(f + t' + l') + + (1/48)*(r + d + b + lt + fl + ft) + + (1/96)*(rt + bt + fr + fd + ld + bl) + + coefficient 2 0 0 1 = + (3/8)*i' + (7/48)*(f + t' + r) + + (1/48)*(l' + d + b + rt + fr + ft) + + (1/96)*(lt + bt + fl + fd + rd + br) + + coefficient 2 1 0 0 = + (3/8)*i' + (1/12)*(t' + r + l' + d) + + (1/64)*(ft + fr + fl + fd) + + (7/48)*f + + (1/48)*b + + (1/96)*(rt + ld + lt + rd) + + (1/192)*(bt + br + bl + bd) + + coefficient 3 0 0 0 = + (3/8)*i' + (1/12)*(t' + f + l' + r + d + b) + + (1/96)*(lt + fl + ft + rt + bt + fr) + + (1/96)*(fd + ld + bd + br + rd + bl) + + + +-- | Compute the determinant of the 4x4 matrix, +-- +-- [1] +-- [x] +-- [y] +-- [z] +-- +-- where [1] = [1, 1, 1, 1], +-- [x] = [x1,x2,x3,x4], +-- +-- et cetera. +-- +-- The termX nonsense is an attempt to prevent Double overflow. +-- which has been observed to happen with large coordinates. +-- +det :: Point -> Point -> Point -> Point -> Double +det p0 p1 p2 p3 = + term5 + term6 + where + Point x1 y1 z1 = p0 + Point x2 y2 z2 = p1 + Point x3 y3 z3 = p2 + Point x4 y4 z4 = p3 + term1 = ((x2 - x4)*y1 - (x1 - x4)*y2 + (x1 - x2)*y4)*z3 + term2 = ((x2 - x3)*y1 - (x1 - x3)*y2 + (x1 - x2)*y3)*z4 + term3 = ((x3 - x4)*y2 - (x2 - x4)*y3 + (x2 - x3)*y4)*z1 + term4 = ((x3 - x4)*y1 - (x1 - x4)*y3 + (x1 - x3)*y4)*z2 + term5 = term1 - term2 + term6 = term3 - term4 + -- | Computed using the formula from Lai & Schumaker, Definition 15.4, -- page 436. +{-# INLINE volume #-} volume :: Tetrahedron -> Double -volume t - | (v0 t) == (v1 t) = 0 - | (v0 t) == (v2 t) = 0 - | (v0 t) == (v3 t) = 0 - | (v1 t) == (v2 t) = 0 - | (v1 t) == (v3 t) = 0 - | (v2 t) == (v3 t) = 0 - | otherwise = (1/6)*(det (vol_matrix t)) - +volume (Tetrahedron _ v0' v1' v2' v3' _) = + (1/6)*(det v0' v1' v2' v3') -- | The barycentric coordinates of a point with respect to v0. +{-# INLINE b0 #-} b0 :: Tetrahedron -> (RealFunction Point) b0 t point = (volume inner_tetrahedron) / (precomputed_volume t) where @@ -276,6 +306,7 @@ b0 t point = (volume inner_tetrahedron) / (precomputed_volume t) -- | The barycentric coordinates of a point with respect to v1. +{-# INLINE b1 #-} b1 :: Tetrahedron -> (RealFunction Point) b1 t point = (volume inner_tetrahedron) / (precomputed_volume t) where @@ -283,6 +314,7 @@ b1 t point = (volume inner_tetrahedron) / (precomputed_volume t) -- | The barycentric coordinates of a point with respect to v2. +{-# INLINE b2 #-} b2 :: Tetrahedron -> (RealFunction Point) b2 t point = (volume inner_tetrahedron) / (precomputed_volume t) where @@ -290,7 +322,278 @@ b2 t point = (volume inner_tetrahedron) / (precomputed_volume t) -- | The barycentric coordinates of a point with respect to v3. +{-# INLINE b3 #-} b3 :: Tetrahedron -> (RealFunction Point) b3 t point = (volume inner_tetrahedron) / (precomputed_volume t) where inner_tetrahedron = t { v3 = point } + + + + +-- | Check the volume of a particular tetrahedron (computed by hand) +-- Its vertices are in clockwise order, so the volume should be +-- negative. +tetrahedron1_geometry_tests :: TestTree +tetrahedron1_geometry_tests = + testGroup "tetrahedron1 geometry" + [ testCase "volume1" volume1 ] + where + p0 = Point 0 (-0.5) 0 + p1 = Point 0 0.5 0 + p2 = Point 2 0 0 + p3 = Point 1 0 1 + t = Tetrahedron { v0 = p0, + v1 = p1, + v2 = p2, + v3 = p3, + function_values = empty_values, + precomputed_volume = 0 } + + volume1 :: Assertion + volume1 = + assertEqual "volume is correct" True (vol ~= (-1/3)) + where + vol = volume t + + +-- | Check the volume of a particular tetrahedron (computed by hand) +-- Its vertices are in counter-clockwise order, so the volume should +-- be positive. +tetrahedron2_geometry_tests :: TestTree +tetrahedron2_geometry_tests = + testGroup "tetrahedron2 geometry" + [ testCase "volume1" volume1 ] + where + p0 = Point 0 (-0.5) 0 + p1 = Point 2 0 0 + p2 = Point 0 0.5 0 + p3 = Point 1 0 1 + t = Tetrahedron { v0 = p0, + v1 = p1, + v2 = p2, + v3 = p3, + function_values = empty_values, + precomputed_volume = 0 } + + volume1 :: Assertion + volume1 = assertEqual "volume1 is correct" True (vol ~= (1/3)) + where + vol = volume t + + + +-- | The barycentric coordinate of v0 with respect to itself should +-- be one. +prop_b0_v0_always_unity :: Tetrahedron -> Property +prop_b0_v0_always_unity t = + (volume t) > 0 ==> (b0 t) (v0 t) ~= 1.0 + +-- | The barycentric coordinate of v1 with respect to v0 should +-- be zero. +prop_b0_v1_always_zero :: Tetrahedron -> Property +prop_b0_v1_always_zero t = + (volume t) > 0 ==> (b0 t) (v1 t) ~= 0 + +-- | The barycentric coordinate of v2 with respect to v0 should +-- be zero. +prop_b0_v2_always_zero :: Tetrahedron -> Property +prop_b0_v2_always_zero t = + (volume t) > 0 ==> (b0 t) (v2 t) ~= 0 + +-- | The barycentric coordinate of v3 with respect to v0 should +-- be zero. +prop_b0_v3_always_zero :: Tetrahedron -> Property +prop_b0_v3_always_zero t = + (volume t) > 0 ==> (b0 t) (v3 t) ~= 0 + +-- | The barycentric coordinate of v1 with respect to itself should +-- be one. +prop_b1_v1_always_unity :: Tetrahedron -> Property +prop_b1_v1_always_unity t = + (volume t) > 0 ==> (b1 t) (v1 t) ~= 1.0 + +-- | The barycentric coordinate of v0 with respect to v1 should +-- be zero. +prop_b1_v0_always_zero :: Tetrahedron -> Property +prop_b1_v0_always_zero t = + (volume t) > 0 ==> (b1 t) (v0 t) ~= 0 + +-- | The barycentric coordinate of v2 with respect to v1 should +-- be zero. +prop_b1_v2_always_zero :: Tetrahedron -> Property +prop_b1_v2_always_zero t = + (volume t) > 0 ==> (b1 t) (v2 t) ~= 0 + +-- | The barycentric coordinate of v3 with respect to v1 should +-- be zero. +prop_b1_v3_always_zero :: Tetrahedron -> Property +prop_b1_v3_always_zero t = + (volume t) > 0 ==> (b1 t) (v3 t) ~= 0 + +-- | The barycentric coordinate of v2 with respect to itself should +-- be one. +prop_b2_v2_always_unity :: Tetrahedron -> Property +prop_b2_v2_always_unity t = + (volume t) > 0 ==> (b2 t) (v2 t) ~= 1.0 + +-- | The barycentric coordinate of v0 with respect to v2 should +-- be zero. +prop_b2_v0_always_zero :: Tetrahedron -> Property +prop_b2_v0_always_zero t = + (volume t) > 0 ==> (b2 t) (v0 t) ~= 0 + +-- | The barycentric coordinate of v1 with respect to v2 should +-- be zero. +prop_b2_v1_always_zero :: Tetrahedron -> Property +prop_b2_v1_always_zero t = + (volume t) > 0 ==> (b2 t) (v1 t) ~= 0 + +-- | The barycentric coordinate of v3 with respect to v2 should +-- be zero. +prop_b2_v3_always_zero :: Tetrahedron -> Property +prop_b2_v3_always_zero t = + (volume t) > 0 ==> (b2 t) (v3 t) ~= 0 + +-- | The barycentric coordinate of v3 with respect to itself should +-- be one. +prop_b3_v3_always_unity :: Tetrahedron -> Property +prop_b3_v3_always_unity t = + (volume t) > 0 ==> (b3 t) (v3 t) ~= 1.0 + +-- | The barycentric coordinate of v0 with respect to v3 should +-- be zero. +prop_b3_v0_always_zero :: Tetrahedron -> Property +prop_b3_v0_always_zero t = + (volume t) > 0 ==> (b3 t) (v0 t) ~= 0 + +-- | The barycentric coordinate of v1 with respect to v3 should +-- be zero. +prop_b3_v1_always_zero :: Tetrahedron -> Property +prop_b3_v1_always_zero t = + (volume t) > 0 ==> (b3 t) (v1 t) ~= 0 + +-- | The barycentric coordinate of v2 with respect to v3 should +-- be zero. +prop_b3_v2_always_zero :: Tetrahedron -> Property +prop_b3_v2_always_zero t = + (volume t) > 0 ==> (b3 t) (v2 t) ~= 0 + + +prop_swapping_vertices_doesnt_affect_coefficients1 :: Tetrahedron -> Bool +prop_swapping_vertices_doesnt_affect_coefficients1 t = + c t 0 0 1 2 == c t' 0 0 1 2 + where + t' = t { v0 = (v1 t), v1 = (v0 t) } + +prop_swapping_vertices_doesnt_affect_coefficients2 :: Tetrahedron -> Bool +prop_swapping_vertices_doesnt_affect_coefficients2 t = + c t 0 1 1 1 == c t' 0 1 1 1 + where + t' = t { v2 = (v3 t), v3 = (v2 t) } + +prop_swapping_vertices_doesnt_affect_coefficients3 :: Tetrahedron -> Bool +prop_swapping_vertices_doesnt_affect_coefficients3 t = + c t 2 1 0 0 == c t' 2 1 0 0 + where + t' = t { v2 = (v3 t), v3 = (v2 t) } + +prop_swapping_vertices_doesnt_affect_coefficients4 :: Tetrahedron -> Bool +prop_swapping_vertices_doesnt_affect_coefficients4 t = + c t 2 0 0 1 == c t' 2 0 0 1 + where + t' = t { v0 = (v3 t), v3 = (v0 t) } + + + + +tetrahedron_tests :: TestTree +tetrahedron_tests = + testGroup "Tetrahedron tests" [ + tetrahedron1_geometry_tests, + tetrahedron2_geometry_tests ] + + + +p78_24_properties :: TestTree +p78_24_properties = + testGroup "p. 78, Section (2.4) properties" [ + testProperty "c3000 identity" prop_c3000_identity, + testProperty "c2100 identity" prop_c2100_identity, + testProperty "c1110 identity" prop_c1110_identity] + where + -- | Returns the domain point of t with indices i,j,k,l. + domain_point :: Tetrahedron -> Int -> Int -> Int -> Int -> Point + domain_point t i j k l = + weighted_sum `scale` (1/3) + where + v0' = (v0 t) `scale` (fromIntegral i) + v1' = (v1 t) `scale` (fromIntegral j) + v2' = (v2 t) `scale` (fromIntegral k) + v3' = (v3 t) `scale` (fromIntegral l) + weighted_sum = v0' + v1' + v2' + v3' + + + -- | Used for convenience in the next few tests. + p :: Tetrahedron -> Int -> Int -> Int -> Int -> Double + p t i j k l = (polynomial t) (domain_point t i j k l) + + + -- | Given in Sorokina and Zeilfelder, p. 78. + prop_c3000_identity :: Tetrahedron -> Property + prop_c3000_identity t = + (volume t) > 0 ==> + c t 3 0 0 0 ~= p t 3 0 0 0 + + -- | Given in Sorokina and Zeilfelder, p. 78. + prop_c2100_identity :: Tetrahedron -> Property + prop_c2100_identity t = + (volume t) > 0 ==> + c t 2 1 0 0 ~= (term1 - term2 + term3 - term4) + where + term1 = (1/3)*(p t 0 3 0 0) + term2 = (5/6)*(p t 3 0 0 0) + term3 = 3*(p t 2 1 0 0) + term4 = (3/2)*(p t 1 2 0 0) + + -- | Given in Sorokina and Zeilfelder, p. 78. + prop_c1110_identity :: Tetrahedron -> Property + prop_c1110_identity t = + (volume t) > 0 ==> + c t 1 1 1 0 ~= (term1 + term2 - term3 - term4) + where + term1 = (1/3)*((p t 3 0 0 0) + (p t 0 3 0 0) + (p t 0 0 3 0)) + term2 = (9/2)*(p t 1 1 1 0) + term3 = (3/4)*((p t 2 1 0 0) + (p t 1 2 0 0) + (p t 2 0 1 0)) + term4 = (3/4)*((p t 1 0 2 0) + (p t 0 2 1 0) + (p t 0 1 2 0)) + + + +tetrahedron_properties :: TestTree +tetrahedron_properties = + testGroup "Tetrahedron properties" [ + p78_24_properties, + testProperty "b0_v0_always_unity" prop_b0_v0_always_unity, + testProperty "b0_v1_always_zero" prop_b0_v1_always_zero, + testProperty "b0_v2_always_zero" prop_b0_v2_always_zero, + testProperty "b0_v3_always_zero" prop_b0_v3_always_zero, + testProperty "b1_v1_always_unity" prop_b1_v1_always_unity, + testProperty "b1_v0_always_zero" prop_b1_v0_always_zero, + testProperty "b1_v2_always_zero" prop_b1_v2_always_zero, + testProperty "b1_v3_always_zero" prop_b1_v3_always_zero, + testProperty "b2_v2_always_unity" prop_b2_v2_always_unity, + testProperty "b2_v0_always_zero" prop_b2_v0_always_zero, + testProperty "b2_v1_always_zero" prop_b2_v1_always_zero, + testProperty "b2_v3_always_zero" prop_b2_v3_always_zero, + testProperty "b3_v3_always_unity" prop_b3_v3_always_unity, + testProperty "b3_v0_always_zero" prop_b3_v0_always_zero, + testProperty "b3_v1_always_zero" prop_b3_v1_always_zero, + testProperty "b3_v2_always_zero" prop_b3_v2_always_zero, + testProperty "swapping_vertices_doesnt_affect_coefficients1" + prop_swapping_vertices_doesnt_affect_coefficients1, + testProperty "swapping_vertices_doesnt_affect_coefficients2" + prop_swapping_vertices_doesnt_affect_coefficients2, + testProperty "swapping_vertices_doesnt_affect_coefficients3" + prop_swapping_vertices_doesnt_affect_coefficients3, + testProperty "swapping_vertices_doesnt_affect_coefficients4" + prop_swapping_vertices_doesnt_affect_coefficients4 ]