X-Git-Url: https://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Fcone%2Fdoubly_nonnegative.py;h=03d23b4ddcbd785b48fe9dd447876cefb586a067;hb=bc4804ef6cbf4b5f12fb654193e133f719dcc623;hp=f705e5e98b083d6cf85fac39148d171cdf452d99;hpb=2d95c4e34d085c9647c73b73b2957f937cfee26b;p=sage.d.git diff --git a/mjo/cone/doubly_nonnegative.py b/mjo/cone/doubly_nonnegative.py index f705e5e..03d23b4 100644 --- a/mjo/cone/doubly_nonnegative.py +++ b/mjo/cone/doubly_nonnegative.py @@ -29,7 +29,7 @@ def is_doubly_nonnegative(A): INPUT: - - ``A`` - The matrix in question + - ``A`` - The matrix in question OUTPUT: @@ -67,9 +67,144 @@ def is_doubly_nonnegative(A): +def has_admissible_extreme_rank(A): + """ + The extreme matrices of the doubly-nonnegative cone have some + restrictions on their ranks. This function checks to see whether or + not ``A`` could be extreme based on its rank. + + INPUT: + + - ``A`` - The matrix in question + + OUTPUT: + + ``False`` if the rank of ``A`` precludes it from being an extreme + matrix of the doubly-nonnegative cone, ``True`` otherwise. + + REFERENCE: + + Hamilton-Jester, Crista Lee; Li, Chi-Kwong. Extreme Vectors of + Doubly Nonnegative Matrices. Rocky Mountain Journal of Mathematics + 26 (1996), no. 4, 1371--1383. doi:10.1216/rmjm/1181071993. + http://projecteuclid.org/euclid.rmjm/1181071993. + + EXAMPLES: + + The zero matrix has rank zero, which is admissible:: + + sage: A = zero_matrix(QQ, 5, 5) + sage: has_admissible_extreme_rank(A) + True + + """ + if not A.is_symmetric(): + # This function is more or less internal, so blow up if passed + # something unexpected. + raise ValueError('The matrix ``A`` must be symmetric.') + + r = rank(A) + n = ZZ(A.nrows()) # Columns would work, too, since ``A`` is symmetric. + + if r == 0: + # Zero is in the doubly-nonnegative cone. + return True + + # See Theorem 3.1 in the cited reference. + if r == 2: + return False + + if n.mod(2) == 0: + # n is even + return r <= max(1, n-3) + else: + # n is odd + return r <= max(1, n-2) + + +def E(matrix_space, i,j): + """ + Return the ``i``,``j``th element of the standard basis in + ``matrix_space``. + + INPUT: + + - ``matrix_space`` - The underlying matrix space of whose basis + the returned matrix is an element + + - ``i`` - The row index of the single nonzero entry + + - ``j`` - The column index of the single nonzero entry + + OUTPUT: + + A basis element of ``matrix_space``. It has a single \"1\" in the + ``i``,``j`` row,column and zeros elsewhere. + + EXAMPLES:: + + sage: M = MatrixSpace(ZZ, 2, 2) + sage: E(M,0,0) + [1 0] + [0 0] + sage: E(M,0,1) + [0 1] + [0 0] + sage: E(M,1,0) + [0 0] + [1 0] + sage: E(M,1,1) + [0 0] + [0 1] + sage: E(M,2,1) + Traceback (most recent call last): + ... + IndexError: Index `i` is out of bounds. + sage: E(M,1,2) + Traceback (most recent call last): + ... + IndexError: Index `j` is out of bounds. + + """ + # We need to check these ourselves, see below. + if i >= matrix_space.nrows(): + raise IndexError('Index `i` is out of bounds.') + if j >= matrix_space.ncols(): + raise IndexError('Index `j` is out of bounds.') + + # The basis here is returned as a one-dimensional list, so we need + # to compute the offset into it based on ``i`` and ``j``. Since we + # compute the index ourselves, we need to do bounds-checking + # manually. Otherwise for e.g. a 2x2 matrix space, the index (0,2) + # would be computed as offset 3 into a four-element list and we + # would succeed incorrectly. + idx = matrix_space.ncols()*i + j + return matrix_space.basis()[idx] + + + def is_extreme_doubly_nonnegative(A): """ Returns ``True`` if the given matrix is an extreme matrix of the doubly-nonnegative cone, and ``False`` otherwise. + + EXAMPLES: + + The zero matrix is an extreme matrix:: + + sage: A = zero_matrix(QQ, 5, 5) + sage: is_extreme_doubly_nonnegative(A) + True + """ + + r = A.rank() + + if r == 0: + # Short circuit, we know the zero matrix is extreme. + return True + + if not is_admissible_extreme_rank(r): + return False + raise NotImplementedError()