X-Git-Url: https://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=dunshire%2Fmatrices.py;h=f35827d16be600cec3ee5d1c2d0fbcea27a9484d;hb=0274de467062ab29d2a41d2a91ec0b28fcd95c8d;hp=66c21768403f19e8affa18fe23d1ffdf4f0ecd16;hpb=97eddc6f61ca53ba39f547360ced35a2f69908cb;p=dunshire.git diff --git a/dunshire/matrices.py b/dunshire/matrices.py index 66c2176..f35827d 100644 --- a/dunshire/matrices.py +++ b/dunshire/matrices.py @@ -3,9 +3,10 @@ Utility functions for working with CVXOPT matrices (instances of the class:`cvxopt.base.matrix` class). """ +from copy import copy from math import sqrt from cvxopt import matrix -from cvxopt.lapack import gees, syevr +from cvxopt.lapack import gees, gesdd, syevr from . import options @@ -17,8 +18,11 @@ def append_col(left, right): Parameters ---------- - left, right : matrix - The two matrices to append to one another. + left : matrix + The "original" matrix, the one that will wind up on the left. + + right : matrix + The matrix to be appended on the right of ``left``. Returns ------- @@ -56,8 +60,11 @@ def append_row(top, bottom): Parameters ---------- - top, bottom : matrix - The two matrices to append to one another. + top : matrix + The "original" matrix, the one that will wind up on top. + + bottom : matrix + The matrix to be appended below ``top``. Returns ------- @@ -140,7 +147,10 @@ def eigenvalues(symmat): domain_dim = symmat.size[0] eigs = matrix(0, (domain_dim, 1), tc='d') - syevr(symmat, eigs) + + # Create a copy of ``symmat`` here because ``syevr`` clobbers it. + dummy = copy(symmat) + syevr(dummy, eigs) return list(eigs) @@ -261,8 +271,11 @@ def inner_product(vec1, vec2): Parameters ---------- - vec1, vec2 : matrix - The two vectors whose inner product you want. + vec1 : matrix + The first vector, whose inner product with ``vec2`` you want. + + vec2 : matrix + The second vector, whose inner product with ``vec1`` you want. Returns ------- @@ -326,17 +339,53 @@ def norm(matrix_or_vector): -------- >>> v = matrix([1,1]) - >>> print('{:.5f}'.format(norm(v))) - 1.41421 + >>> norm(v) + 1.414... >>> A = matrix([1,1,1,1], (2,2)) >>> norm(A) - 2.0 + 2.0... """ return sqrt(inner_product(matrix_or_vector, matrix_or_vector)) +def specnorm(mat): + """ + Return the spectral norm of a matrix. + + The spectral norm of a matrix is its largest singular value, and it + corresponds to the operator norm induced by the vector Euclidean norm. + + Parameters + ---------- + + mat : matrix + The matrix whose spectral norm you want. + + Examples: + + >>> specnorm(identity(3)) + 1.0 + + >>> specnorm(5*identity(4)) + 5.0 + + """ + num_eigs = min(mat.size) + eigs = matrix(0, (num_eigs, 1), tc='d') + typecode = 'd' + if any([isinstance(entry, complex) for entry in mat]): + typecode = 'z' + dummy = matrix(mat, mat.size, tc=typecode) + gesdd(dummy, eigs) + + if len(eigs) > 0: + return eigs[0] + else: + return 0 + + def vec(mat): """ Create a long vector in column-major order from ``mat``. @@ -388,3 +437,57 @@ def vec(mat): """ return matrix(mat, (len(mat), 1)) + + +def condition_number(mat): + """ + Return the condition number of the given matrix. + + The condition number of a matrix quantifies how hard it is to do + numerical computation with that matrix. It is usually defined as + the ratio of the norm of the matrix to the norm of its inverse, and + therefore depends on the norm used. One way to compute the condition + number with respect to the 2-norm is as the ratio of the matrix's + largest and smallest singular values. Since we have easy access to + those singular values, that is the algorithm we use. + + The larger the condition number is, the worse the matrix is. + + Parameters + ---------- + mat : matrix + The matrix whose condition number you want. + + Returns + ------- + + float + The nonnegative condition number of ``mat``. + + Examples + -------- + + >>> condition_number(identity(3)) + 1.0 + + >>> A = matrix([[2,1],[1,2]]) + >>> abs(condition_number(A) - 3.0) < options.ABS_TOL + True + + >>> A = matrix([[2,1j],[-1j,2]]) + >>> abs(condition_number(A) - 3.0) < options.ABS_TOL + True + + """ + num_eigs = min(mat.size) + eigs = matrix(0, (num_eigs, 1), tc='d') + typecode = 'd' + if any([isinstance(entry, complex) for entry in mat]): + typecode = 'z' + dummy = matrix(mat, mat.size, tc=typecode) + gesdd(dummy, eigs) + + if len(eigs) > 0: + return eigs[0]/eigs[-1] + else: + return 0