X-Git-Url: https://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=dunshire%2Fgames.py;h=f9877b334cfa3bcf2d60c6269ecbf4340de24eb1;hb=f5b5ef66e41ae0538eb32e4b8420c36a23b95361;hp=77c83300a586e7e9f8a98a766d242f98738635f1;hpb=fa3639d3a5cc52e104a81dc75d8688c64c274a71;p=dunshire.git diff --git a/dunshire/games.py b/dunshire/games.py index 77c8330..f9877b3 100644 --- a/dunshire/games.py +++ b/dunshire/games.py @@ -4,8 +4,6 @@ Symmetric linear games and their solutions. This module contains the main :class:`SymmetricLinearGame` class that knows how to solve a linear game. """ -from math import sqrt - from cvxopt import matrix, printing, solvers from .cones import CartesianProduct, IceCream, NonnegativeOrthant from .errors import GameUnsolvableException, PoorScalingException @@ -833,9 +831,10 @@ class SymmetricLinearGame: # 45-45-90 triangle and the shortest distance to the # outside of the cone should be 1/sqrt(2) of that. # It works in R^2, so it works everywhere, right? + # We use "2" because it's better numerically than sqrt(2). height = self.e1()[0] radius = norm(self.e1()[1:]) - dist = (height - radius) / sqrt(2) + dist = (height - radius) / 2 else: raise NotImplementedError @@ -846,6 +845,38 @@ class SymmetricLinearGame: return {'x': x, 's': s} + def player2_start(self): + """ + Return a feasible starting point for player two. + """ + q = self.e1() / (norm(self.e1()) ** 2) + + # Compute the distance from p to the outside of K. + if isinstance(self.K(), NonnegativeOrthant): + # How far is it to a wall? + dist = min(list(self.e2())) + elif isinstance(self.K(), IceCream): + # How far is it to the boundary of the ball that defines + # the ice-cream cone at a given height? Now draw a + # 45-45-90 triangle and the shortest distance to the + # outside of the cone should be 1/sqrt(2) of that. + # It works in R^2, so it works everywhere, right? + # We use "2" because it's better numerically than sqrt(2). + height = self.e2()[0] + radius = norm(self.e2()[1:]) + dist = (height - radius) / 2 + else: + raise NotImplementedError + + omega = specnorm(self.L())/(dist*norm(self.e1())) + y = matrix([omega]) + z2 = q + z1 = y*self.e2() - self.L().trans()*z2 + z = matrix([z1,z2], (self.dimension()*2, 1)) + + return {'y': y, 'z': z} + + def solution(self): """ Solve this linear game and return a :class:`Solution`.