]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/cone/cone.py
Remove references to my unfinished paper.
[sage.d.git] / mjo / cone / cone.py
index f78c27e7e8ba748274b968601fff61c4701a98c1..fd63612b3277151d880be83fa5b827652081bd22 100644 (file)
@@ -10,6 +10,12 @@ def is_lyapunov_like(L,K):
     ``K``. It is known [Orlitzky]_ that this property need only be
     checked for generators of ``K`` and its dual.
 
+    There are faster ways of checking this property. For example, we
+    could compute a `lyapunov_like_basis` of the cone, and then test
+    whether or not the given matrix is contained in the span of that
+    basis. The value of this function is that it works on symbolic
+    matrices.
+
     INPUT:
 
     - ``L`` -- A linear transformation or matrix.
@@ -40,14 +46,14 @@ def is_lyapunov_like(L,K):
     The identity is always Lyapunov-like in a nontrivial space::
 
         sage: set_random_seed()
-        sage: K = random_cone(min_ambient_dim = 1, max_ambient_dim = 8)
+        sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=8)
         sage: L = identity_matrix(K.lattice_dim())
         sage: is_lyapunov_like(L,K)
         True
 
     As is the "zero" transformation::
 
-        sage: K = random_cone(min_ambient_dim = 1, max_ambient_dim = 8)
+        sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=8)
         sage: R = K.lattice().vector_space().base_ring()
         sage: L = zero_matrix(R, K.lattice_dim())
         sage: is_lyapunov_like(L,K)
@@ -56,7 +62,7 @@ def is_lyapunov_like(L,K):
         Everything in ``K.lyapunov_like_basis()`` should be Lyapunov-like
         on ``K``::
 
-        sage: K = random_cone(min_ambient_dim = 1, max_ambient_dim = 6)
+        sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=6)
         sage: all([ is_lyapunov_like(L,K) for L in K.lyapunov_like_basis() ])
         True
 
@@ -65,76 +71,52 @@ def is_lyapunov_like(L,K):
                 for (x,s) in K.discrete_complementarity_set()])
 
 
-def random_element(K):
+def positive_operator_gens(K1, K2 = None):
     r"""
-    Return a random element of ``K`` from its ambient vector space.
-
-    ALGORITHM:
-
-    The cone ``K`` is specified in terms of its generators, so that
-    ``K`` is equal to the convex conic combination of those generators.
-    To choose a random element of ``K``, we assign random nonnegative
-    coefficients to each generator of ``K`` and construct a new vector
-    from the scaled rays.
-
-    A vector, rather than a ray, is returned so that the element may
-    have non-integer coordinates. Thus the element may have an
-    arbitrarily small norm.
+    Compute generators of the cone of positive operators on this cone. A
+    linear operator on a cone is positive if the image of the cone under
+    the operator is a subset of the cone. This concept can be extended
+    to two cones, where the image of the first cone under a positive
+    operator is a subset of the second cone.
 
-    EXAMPLES:
+    INPUT:
 
-    A random element of the trivial cone is zero::
+    - ``K2`` -- (default: ``K1``) the codomain cone; the image of this
+                cone under the returned operators is a subset of ``K2``.
 
-        sage: set_random_seed()
-        sage: K = Cone([], ToricLattice(0))
-        sage: random_element(K)
-        ()
-        sage: K = Cone([(0,)])
-        sage: random_element(K)
-        (0)
-        sage: K = Cone([(0,0)])
-        sage: random_element(K)
-        (0, 0)
-        sage: K = Cone([(0,0,0)])
-        sage: random_element(K)
-        (0, 0, 0)
+    OUTPUT:
 
-    TESTS:
+    A list of `m`-by-``n`` matrices where ``m == K2.lattice_dim()`` and
+    ``n == K1.lattice_dim()``. Each matrix ``P`` in the list should have
+    the property that ``P*x`` is an element of ``K2`` whenever ``x`` is
+    an element of ``K1``. Moreover, any nonnegative linear combination of
+    these matrices shares the same property.
 
-    Any cone should contain an element of itself::
+    .. SEEALSO::
 
-        sage: set_random_seed()
-        sage: K = random_cone(max_rays = 8)
-        sage: K.contains(random_element(K))
-        True
+           :meth:`cross_positive_operator_gens`, :meth:`Z_operator_gens`,
 
-    """
-    V = K.lattice().vector_space()
-    F = V.base_ring()
-    coefficients = [ F.random_element().abs() for i in range(K.nrays()) ]
-    vector_gens  = map(V, K.rays())
-    scaled_gens  = [ coefficients[i]*vector_gens[i]
-                         for i in range(len(vector_gens)) ]
-
-    # Make sure we return a vector. Without the coercion, we might
-    # return ``0`` when ``K`` has no rays.
-    v = V(sum(scaled_gens))
-    return v
+    REFERENCES:
 
+    .. [Tam]
+       B.-S. Tam.
+       Some results of polyhedral cones and simplicial cones.
+       Linear and Multilinear Algebra, 4:4 (1977) 281--284.
 
-def positive_operator_gens(K):
-    r"""
-    Compute generators of the cone of positive operators on this cone.
+    EXAMPLES:
 
-    OUTPUT:
+    Positive operators on the nonnegative orthant are nonnegative matrices::
 
-    A list of `n`-by-``n`` matrices where ``n == K.lattice_dim()``.
-    Each matrix ``P`` in the list should have the property that ``P*x``
-    is an element of ``K`` whenever ``x`` is an element of
-    ``K``. Moreover, any nonnegative linear combination of these
-    matrices shares the same property.
+        sage: K = Cone([(1,)])
+        sage: positive_operator_gens(K)
+        [[1]]
 
-    EXAMPLES:
+        sage: K = Cone([(1,0),(0,1)])
+        sage: positive_operator_gens(K)
+        [
+        [1 0]  [0 1]  [0 0]  [0 0]
+        [0 0], [0 0], [1 0], [0 1]
+        ]
 
     The trivial cone in a trivial space has no positive operators::
 
@@ -142,17 +124,19 @@ def positive_operator_gens(K):
         sage: positive_operator_gens(K)
         []
 
-    Positive operators on the nonnegative orthant are nonnegative matrices::
+    Every operator is positive on the trivial cone::
 
-        sage: K = Cone([(1,)])
+        sage: K = Cone([(0,)])
         sage: positive_operator_gens(K)
-        [[1]]
+        [[1], [-1]]
 
-        sage: K = Cone([(1,0),(0,1)])
+        sage: K = Cone([(0,0)])
+        sage: K.is_trivial()
+        True
         sage: positive_operator_gens(K)
         [
-        [1 0]  [0 1]  [0 0]  [0 0]
-        [0 0], [0 0], [1 0], [0 1]
+        [1 0]  [-1  0]  [0 1]  [ 0 -1]  [0 0]  [ 0  0]  [0 0]  [ 0  0]
+        [0 0], [ 0  0], [0 0], [ 0  0], [1 0], [-1  0], [0 1], [ 0 -1]
         ]
 
     Every operator is positive on the ambient vector space::
@@ -172,120 +156,571 @@ def positive_operator_gens(K):
         [0 0], [ 0  0], [0 0], [ 0  0], [1 0], [-1  0], [0 1], [ 0 -1]
         ]
 
+    A non-obvious application is to find the positive operators on the
+    right half-plane::
+
+        sage: K = Cone([(1,0),(0,1),(0,-1)])
+        sage: positive_operator_gens(K)
+        [
+        [1 0]  [0 0]  [ 0  0]  [0 0]  [ 0  0]
+        [0 0], [1 0], [-1  0], [0 1], [ 0 -1]
+        ]
+
     TESTS:
 
-    A positive operator on a cone should send its generators into the cone::
+    Each positive operator generator should send the generators of one
+    cone into the other cone::
+
+        sage: set_random_seed()
+        sage: K1 = random_cone(max_ambient_dim=4)
+        sage: K2 = random_cone(max_ambient_dim=4)
+        sage: pi_K1_K2 = positive_operator_gens(K1,K2)
+        sage: all([ K2.contains(P*x) for P in pi_K1_K2 for x in K1 ])
+        True
+
+    Each positive operator generator should send a random element of one
+    cone into the other cone::
 
-        sage: K = random_cone(max_ambient_dim = 6)
+        sage: set_random_seed()
+        sage: K1 = random_cone(max_ambient_dim=4)
+        sage: K2 = random_cone(max_ambient_dim=4)
+        sage: pi_K1_K2 = positive_operator_gens(K1,K2)
+        sage: all([ K2.contains(P*K1.random_element(QQ)) for P in pi_K1_K2 ])
+        True
+
+    A random element of the positive operator cone should send the
+    generators of one cone into the other cone::
+
+        sage: set_random_seed()
+        sage: K1 = random_cone(max_ambient_dim=4)
+        sage: K2 = random_cone(max_ambient_dim=4)
+        sage: pi_K1_K2 = positive_operator_gens(K1,K2)
+        sage: L = ToricLattice(K1.lattice_dim() * K2.lattice_dim())
+        sage: pi_cone = Cone([ g.list() for g in pi_K1_K2 ],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: P = matrix(K2.lattice_dim(),
+        ....:            K1.lattice_dim(),
+        ....:            pi_cone.random_element(QQ).list())
+        sage: all([ K2.contains(P*x) for x in K1 ])
+        True
+
+    A random element of the positive operator cone should send a random
+    element of one cone into the other cone::
+
+        sage: set_random_seed()
+        sage: K1 = random_cone(max_ambient_dim=4)
+        sage: K2 = random_cone(max_ambient_dim=4)
+        sage: pi_K1_K2 = positive_operator_gens(K1,K2)
+        sage: L = ToricLattice(K1.lattice_dim() * K2.lattice_dim())
+        sage: pi_cone = Cone([ g.list() for g in pi_K1_K2 ],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: P = matrix(K2.lattice_dim(),
+        ....:            K1.lattice_dim(),
+        ....:            pi_cone.random_element(QQ).list())
+        sage: K2.contains(P*K1.random_element(ring=QQ))
+        True
+
+    The lineality space of the dual of the cone of positive operators
+    can be computed from the lineality spaces of the cone and its dual::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
         sage: pi_of_K = positive_operator_gens(K)
-        sage: all([K.contains(p*x) for p in pi_of_K for x in K.rays()])
+        sage: L = ToricLattice(K.lattice_dim()**2)
+        sage: pi_cone = Cone([ g.list() for g in pi_of_K ],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: actual = pi_cone.dual().linear_subspace()
+        sage: U1 = [ vector((s.tensor_product(x)).list())
+        ....:        for x in K.lines()
+        ....:        for s in K.dual() ]
+        sage: U2 = [ vector((s.tensor_product(x)).list())
+        ....:        for x in K
+        ....:        for s in K.dual().lines() ]
+        sage: expected = pi_cone.lattice().vector_space().span(U1 + U2)
+        sage: actual == expected
+        True
+
+    The lineality of the dual of the cone of positive operators
+    is known from its lineality space::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: n = K.lattice_dim()
+        sage: m = K.dim()
+        sage: l = K.lineality()
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: L = ToricLattice(n**2)
+        sage: pi_cone = Cone([p.list() for p in pi_of_K],
+        ....:                 lattice=L,
+        ....:                 check=False)
+        sage: actual = pi_cone.dual().lineality()
+        sage: expected = l*(m - l) + m*(n - m)
+        sage: actual == expected
         True
 
     The dimension of the cone of positive operators is given by the
     corollary in my paper::
 
-        sage: K = random_cone(max_ambient_dim = 6)
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
         sage: n = K.lattice_dim()
         sage: m = K.dim()
         sage: l = K.lineality()
         sage: pi_of_K = positive_operator_gens(K)
-        sage: actual = Cone([p.list() for p in pi_of_K]).dim()
-        sage: expected = n**2 - l*(n - l) - (n - m)*m
+        sage: L = ToricLattice(n**2)
+        sage: pi_cone = Cone([p.list() for p in pi_of_K],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: actual = pi_cone.dim()
+        sage: expected = n**2 - l*(m - l) - (n - m)*m
+        sage: actual == expected
+        True
+
+    The trivial cone, full space, and half-plane all give rise to the
+    expected dimensions::
+
+        sage: n = ZZ.random_element().abs()
+        sage: K = Cone([[0] * n], ToricLattice(n))
+        sage: K.is_trivial()
+        True
+        sage: L = ToricLattice(n^2)
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: pi_cone = Cone([p.list() for p in pi_of_K],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: actual = pi_cone.dim()
+        sage: actual == n^2
+        True
+        sage: K = K.dual()
+        sage: K.is_full_space()
+        True
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: pi_cone = Cone([p.list() for p in pi_of_K],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: actual = pi_cone.dim()
+        sage: actual == n^2
+        True
+        sage: K = Cone([(1,0),(0,1),(0,-1)])
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: actual = Cone([p.list() for p in pi_of_K], check=False).dim()
+        sage: actual == 3
+        True
+
+    The lineality of the cone of positive operators follows from the
+    description of its generators::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: n = K.lattice_dim()
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: L = ToricLattice(n**2)
+        sage: pi_cone = Cone([p.list() for p in pi_of_K],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: actual = pi_cone.lineality()
+        sage: expected = n**2 - K.dim()*K.dual().dim()
+        sage: actual == expected
+        True
+
+    The trivial cone, full space, and half-plane all give rise to the
+    expected linealities::
+
+        sage: n = ZZ.random_element().abs()
+        sage: K = Cone([[0] * n], ToricLattice(n))
+        sage: K.is_trivial()
+        True
+        sage: L = ToricLattice(n^2)
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: pi_cone = Cone([p.list() for p in pi_of_K],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: actual = pi_cone.lineality()
+        sage: actual == n^2
+        True
+        sage: K = K.dual()
+        sage: K.is_full_space()
+        True
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L)
+        sage: pi_cone.lineality() == n^2
+        True
+        sage: K = Cone([(1,0),(0,1),(0,-1)])
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: pi_cone = Cone([p.list() for p in pi_of_K], check=False)
+        sage: actual = pi_cone.lineality()
+        sage: actual == 2
+        True
+
+    A cone is proper if and only if its cone of positive operators
+    is proper::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: L = ToricLattice(K.lattice_dim()**2)
+        sage: pi_cone = Cone([p.list() for p in pi_of_K],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: K.is_proper() == pi_cone.is_proper()
+        True
+
+    The positive operators of a permuted cone can be obtained by
+    conjugation::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: L = ToricLattice(K.lattice_dim()**2)
+        sage: p = SymmetricGroup(K.lattice_dim()).random_element().matrix()
+        sage: pK = Cone([ p*k for k in K ], K.lattice(), check=False)
+        sage: pi_of_pK = positive_operator_gens(pK)
+        sage: actual = Cone([t.list() for t in pi_of_pK],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: expected = Cone([(p*t*p.inverse()).list() for t in pi_of_K],
+        ....:                   lattice=L,
+        ....:                   check=False)
+        sage: actual.is_equivalent(expected)
+        True
+
+    A transformation is positive on a cone if and only if its adjoint is
+    positive on the dual of that cone::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: F = K.lattice().vector_space().base_field()
+        sage: n = K.lattice_dim()
+        sage: L = ToricLattice(n**2)
+        sage: W = VectorSpace(F, n**2)
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: pi_of_K_star = positive_operator_gens(K.dual())
+        sage: pi_cone = Cone([p.list() for p in pi_of_K],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: pi_star = Cone([p.list() for p in pi_of_K_star],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: M = MatrixSpace(F, n)
+        sage: L = M(pi_cone.random_element(ring=QQ).list())
+        sage: pi_star.contains(W(L.transpose().list()))
+        True
+
+        sage: L = W.random_element()
+        sage: L_star = W(M(L.list()).transpose().list())
+        sage: pi_cone.contains(L) ==  pi_star.contains(L_star)
+        True
+
+    The Lyapunov rank of the positive operator cone is the product of
+    the Lyapunov ranks of the associated cones if they're all proper::
+
+        sage: K1 = random_cone(max_ambient_dim=4,
+        ....:                  strictly_convex=True,
+        ....:                  solid=True)
+        sage: K2 = random_cone(max_ambient_dim=4,
+        ....:                  strictly_convex=True,
+        ....:                  solid=True)
+        sage: pi_K1_K2 = positive_operator_gens(K1,K2)
+        sage: L = ToricLattice(K1.lattice_dim() * K2.lattice_dim())
+        sage: pi_cone = Cone([ g.list() for g in pi_K1_K2 ],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: beta1 = K1.lyapunov_rank()
+        sage: beta2 = K2.lyapunov_rank()
+        sage: pi_cone.lyapunov_rank() == beta1*beta2
+        True
+
+    The Lyapunov-like operators on a proper polyhedral positive operator
+    cone can be computed from the Lyapunov-like operators on the cones
+    with respect to which the operators are positive::
+
+        sage: K1 = random_cone(max_ambient_dim=4,
+        ....:                  strictly_convex=True,
+        ....:                  solid=True)
+        sage: K2 = random_cone(max_ambient_dim=4,
+        ....:                  strictly_convex=True,
+        ....:                  solid=True)
+        sage: pi_K1_K2 = positive_operator_gens(K1,K2)
+        sage: F = K1.lattice().base_field()
+        sage: m = K1.lattice_dim()
+        sage: n = K2.lattice_dim()
+        sage: L = ToricLattice(m*n)
+        sage: M1 = MatrixSpace(F, m, m)
+        sage: M2 = MatrixSpace(F, n, n)
+        sage: LL_K1 = [ M1(x.list()) for x in K1.dual().lyapunov_like_basis() ]
+        sage: LL_K2 = [ M2(x.list()) for x in K2.lyapunov_like_basis() ]
+        sage: tps = [ s.tensor_product(x) for x in LL_K1 for s in LL_K2 ]
+        sage: W = VectorSpace(F, (m**2)*(n**2))
+        sage: expected = span(F, [ W(x.list()) for x in tps ])
+        sage: pi_cone = Cone([p.list() for p in pi_K1_K2],
+        ....:                 lattice=L,
+        ....:                 check=False)
+        sage: LL_pi = pi_cone.lyapunov_like_basis()
+        sage: actual = span(F, [ W(x.list()) for x in LL_pi ])
         sage: actual == expected
         True
 
     """
+    if K2 is None:
+        K2 = K1
+
     # Matrices are not vectors in Sage, so we have to convert them
     # to vectors explicitly before we can find a basis. We need these
     # two values to construct the appropriate "long vector" space.
-    F = K.lattice().base_field()
-    n = K.lattice_dim()
+    F = K1.lattice().base_field()
+    n = K1.lattice_dim()
+    m = K2.lattice_dim()
 
-    tensor_products = [ s.tensor_product(x) for x in K for s in K.dual() ]
+    tensor_products = [ s.tensor_product(x) for x in K1 for s in K2.dual() ]
 
     # Convert those tensor products to long vectors.
-    W = VectorSpace(F, n**2)
+    W = VectorSpace(F, n*m)
     vectors = [ W(tp.list()) for tp in tensor_products ]
 
-    # Create the *dual* cone of the positive operators, expressed as
-    # long vectors..
-    pi_dual = Cone(vectors, ToricLattice(W.dimension()))
+    check = True
+    if K1.is_proper() and K2.is_proper():
+        # All of the generators involved are extreme vectors and
+        # therefore minimal. If this cone is neither solid nor
+        # strictly convex, then the tensor product of ``s`` and ``x``
+        # is the same as that of ``-s`` and ``-x``. However, as a
+        # /set/, ``tensor_products`` may still be minimal.
+        check = False
+
+    # Create the dual cone of the positive operators, expressed as
+    # long vectors.
+    pi_dual = Cone(vectors, ToricLattice(W.dimension()), check=check)
 
     # Now compute the desired cone from its dual...
     pi_cone = pi_dual.dual()
 
     # And finally convert its rays back to matrix representations.
-    M = MatrixSpace(F, n)
-    return [ M(v.list()) for v in pi_cone.rays() ]
+    M = MatrixSpace(F, m, n)
+    return [ M(v.list()) for v in pi_cone ]
 
 
-def Z_transformation_gens(K):
+def cross_positive_operator_gens(K):
     r"""
-    Compute generators of the cone of Z-transformations on this cone.
+    Compute generators of the cone of cross-positive operators on this
+    cone.
 
     OUTPUT:
 
     A list of `n`-by-``n`` matrices where ``n == K.lattice_dim()``.
     Each matrix ``L`` in the list should have the property that
-    ``(L*x).inner_product(s) <= 0`` whenever ``(x,s)`` is an element the
-    discrete complementarity set of ``K``. Moreover, any nonnegative
-    linear combination of these matrices shares the same property.
+    ``(L*x).inner_product(s) >= 0`` whenever ``(x,s)`` is an element of
+    this cone's :meth:`discrete_complementarity_set`. Moreover, any
+    conic (nonnegative linear) combination of these matrices shares the
+    same property.
+
+    .. SEEALSO::
+
+       :meth:`positive_operator_gens`, :meth:`Z_operator_gens`,
 
     EXAMPLES:
 
-    Z-transformations on the nonnegative orthant are just Z-matrices.
-    That is, matrices whose off-diagonal elements are nonnegative::
+    Cross-positive operators on the nonnegative orthant are negations
+    of Z-matrices; that is, matrices whose off-diagonal elements are
+    nonnegative::
 
         sage: K = Cone([(1,0),(0,1)])
-        sage: Z_transformation_gens(K)
+        sage: cross_positive_operator_gens(K)
         [
-        [ 0 -1]  [ 0  0]  [-1  0]  [1 0]  [ 0  0]  [0 0]
-        [ 0  0], [-1  0], [ 0  0], [0 0], [ 0 -1], [0 1]
+        [0 1]  [0 0]  [1 0]  [-1  0]  [0 0]  [ 0  0]
+        [0 0], [1 0], [0 0], [ 0  0], [0 1], [ 0 -1]
         ]
         sage: K = Cone([(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)])
-        sage: all([ z[i][j] <= 0 for z in Z_transformation_gens(K)
-        ....:                    for i in range(z.nrows())
-        ....:                    for j in range(z.ncols())
+        sage: all([ c[i][j] >= 0 for c in cross_positive_operator_gens(K)
+        ....:                    for i in range(c.nrows())
+        ....:                    for j in range(c.ncols())
         ....:                    if i != j ])
         True
 
-    The trivial cone in a trivial space has no Z-transformations::
+    The trivial cone in a trivial space has no cross-positive operators::
 
         sage: K = Cone([], ToricLattice(0))
-        sage: Z_transformation_gens(K)
+        sage: cross_positive_operator_gens(K)
         []
 
-    Z-transformations on a subspace are Lyapunov-like and vice-versa::
+    Every operator is a cross-positive operator on the ambient vector
+    space::
+
+        sage: K = Cone([(1,),(-1,)])
+        sage: K.is_full_space()
+        True
+        sage: cross_positive_operator_gens(K)
+        [[1], [-1]]
+
+        sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
+        sage: K.is_full_space()
+        True
+        sage: cross_positive_operator_gens(K)
+        [
+        [1 0]  [-1  0]  [0 1]  [ 0 -1]  [0 0]  [ 0  0]  [0 0]  [ 0  0]
+        [0 0], [ 0  0], [0 0], [ 0  0], [1 0], [-1  0], [0 1], [ 0 -1]
+        ]
+
+    A non-obvious application is to find the cross-positive operators
+    on the right half-plane::
+
+        sage: K = Cone([(1,0),(0,1),(0,-1)])
+        sage: cross_positive_operator_gens(K)
+        [
+        [1 0]  [-1  0]  [0 0]  [ 0  0]  [0 0]  [ 0  0]
+        [0 0], [ 0  0], [1 0], [-1  0], [0 1], [ 0 -1]
+        ]
+
+    Cross-positive operators on a subspace are Lyapunov-like and
+    vice-versa::
 
         sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
         sage: K.is_full_space()
         True
         sage: lls = span([ vector(l.list()) for l in K.lyapunov_like_basis() ])
-        sage: zs  = span([ vector(z.list()) for z in Z_transformation_gens(K) ])
-        sage: zs == lls
+        sage: cs  = span([ vector(c.list()) for c in cross_positive_operator_gens(K) ])
+        sage: cs == lls
         True
 
     TESTS:
 
-    The Z-property is possessed by every Z-transformation::
+    The cross-positive property is possessed by every cross-positive
+    operator::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim = 6)
-        sage: Z_of_K = Z_transformation_gens(K)
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: Sigma_of_K = cross_positive_operator_gens(K)
         sage: dcs = K.discrete_complementarity_set()
-        sage: all([(z*x).inner_product(s) <= 0 for z in Z_of_K
+        sage: all([(c*x).inner_product(s) >= 0 for c in Sigma_of_K
         ....:                                  for (x,s) in dcs])
         True
 
-    The lineality space of Z is LL::
+    The lineality space of the cone of cross-positive operators is the
+    space of Lyapunov-like operators::
 
         sage: set_random_seed()
-        sage: K = random_cone(min_ambient_dim = 1, max_ambient_dim = 6)
-        sage: lls = span([ vector(l.list()) for l in K.lyapunov_like_basis() ])
-        sage: z_cone  = Cone([ z.list() for z in Z_transformation_gens(K) ])
-        sage: z_cone.linear_subspace() == lls
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: L = ToricLattice(K.lattice_dim()**2)
+        sage: Sigma_cone = Cone([ c.list() for c in cross_positive_operator_gens(K) ],
+        ....:                     lattice=L,
+        ....:                     check=False)
+        sage: ll_basis = [ vector(l.list()) for l in K.lyapunov_like_basis() ]
+        sage: lls = L.vector_space().span(ll_basis)
+        sage: Sigma_cone.linear_subspace() == lls
+        True
+
+    The lineality of the cross-positive operators on a cone is the
+    Lyapunov rank of that cone::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: Sigma_of_K = cross_positive_operator_gens(K)
+        sage: L = ToricLattice(K.lattice_dim()**2)
+        sage: Sigma_cone  = Cone([ c.list() for c in Sigma_of_K ],
+        ....:                      lattice=L,
+        ....:                      check=False)
+        sage: Sigma_cone.lineality() == K.lyapunov_rank()
+        True
+
+    The lineality spaces of the duals of the positive and cross-positive
+    operator cones are equal. From this it follows that the dimensions of
+    the cross-positive operator cone and positive operator cone are equal::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: Sigma_of_K = cross_positive_operator_gens(K)
+        sage: L = ToricLattice(K.lattice_dim()**2)
+        sage: pi_cone = Cone([p.list() for p in pi_of_K],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: Sigma_cone = Cone([ c.list() for c in Sigma_of_K],
+        ....:                     lattice=L,
+        ....:                     check=False)
+        sage: pi_cone.dim() == Sigma_cone.dim()
         True
+        sage: pi_star = pi_cone.dual()
+        sage: sigma_star = Sigma_cone.dual()
+        sage: pi_star.linear_subspace() == sigma_star.linear_subspace()
+        True
+
+    The trivial cone, full space, and half-plane all give rise to the
+    expected dimensions::
 
+        sage: n = ZZ.random_element().abs()
+        sage: K = Cone([[0] * n], ToricLattice(n))
+        sage: K.is_trivial()
+        True
+        sage: L = ToricLattice(n^2)
+        sage: Sigma_of_K = cross_positive_operator_gens(K)
+        sage: Sigma_cone = Cone([c.list() for c in Sigma_of_K],
+        ....:                    lattice=L,
+        ....:                    check=False)
+        sage: actual = Sigma_cone.dim()
+        sage: actual == n^2
+        True
+        sage: K = K.dual()
+        sage: K.is_full_space()
+        True
+        sage: Sigma_of_K = cross_positive_operator_gens(K)
+        sage: Sigma_cone = Cone([ c.list() for c in Sigma_of_K ],
+        ....:                     lattice=L,
+        ....:                     check=False)
+        sage: actual = Sigma_cone.dim()
+        sage: actual == n^2
+        True
+        sage: K = Cone([(1,0),(0,1),(0,-1)])
+        sage: Sigma_of_K = cross_positive_operator_gens(K)
+        sage: Sigma_cone = Cone([ c.list() for c in Sigma_of_K ], check=False)
+        sage: Sigma_cone.dim() == 3
+        True
+
+    The cross-positive operators of a permuted cone can be obtained by
+    conjugation::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: L = ToricLattice(K.lattice_dim()**2)
+        sage: p = SymmetricGroup(K.lattice_dim()).random_element().matrix()
+        sage: pK = Cone([ p*k for k in K ], K.lattice(), check=False)
+        sage: Sigma_of_pK = cross_positive_operator_gens(pK)
+        sage: actual = Cone([t.list() for t in Sigma_of_pK],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: Sigma_of_K = cross_positive_operator_gens(K)
+        sage: expected = Cone([ (p*t*p.inverse()).list() for t in Sigma_of_K ],
+        ....:                   lattice=L,
+        ....:                   check=False)
+        sage: actual.is_equivalent(expected)
+        True
+
+    An operator is cross-positive on a cone if and only if its
+    adjoint is cross-positive on the dual of that cone::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: F = K.lattice().vector_space().base_field()
+        sage: n = K.lattice_dim()
+        sage: L = ToricLattice(n**2)
+        sage: W = VectorSpace(F, n**2)
+        sage: Sigma_of_K = cross_positive_operator_gens(K)
+        sage: Sigma_of_K_star = cross_positive_operator_gens(K.dual())
+        sage: Sigma_cone = Cone([ p.list() for p in Sigma_of_K ],
+        ....:                     lattice=L,
+        ....:                     check=False)
+        sage: Sigma_star = Cone([ p.list() for p in Sigma_of_K_star ],
+        ....:                     lattice=L,
+        ....:                     check=False)
+        sage: M = MatrixSpace(F, n)
+        sage: L = M(Sigma_cone.random_element(ring=QQ).list())
+        sage: Sigma_star.contains(W(L.transpose().list()))
+        True
+
+        sage: L = W.random_element()
+        sage: L_star = W(M(L.list()).transpose().list())
+        sage: Sigma_cone.contains(L) ==  Sigma_star.contains(L_star)
+        True
     """
     # Matrices are not vectors in Sage, so we have to convert them
     # to vectors explicitly before we can find a basis. We need these
@@ -294,7 +729,7 @@ def Z_transformation_gens(K):
     n = K.lattice_dim()
 
     # These tensor products contain generators for the dual cone of
-    # the cross-positive transformations.
+    # the cross-positive operators.
     tensor_products = [ s.tensor_product(x)
                         for (x,s) in K.discrete_complementarity_set() ]
 
@@ -302,15 +737,79 @@ def Z_transformation_gens(K):
     W = VectorSpace(F, n**2)
     vectors = [ W(m.list()) for m in tensor_products ]
 
-    # Create the *dual* cone of the cross-positive operators,
-    # expressed as long vectors..
-    Sigma_dual = Cone(vectors, lattice=ToricLattice(W.dimension()))
+    check = True
+    if K.is_proper():
+        # All of the generators involved are extreme vectors and
+        # therefore minimal. If this cone is neither solid nor
+        # strictly convex, then the tensor product of ``s`` and ``x``
+        # is the same as that of ``-s`` and ``-x``. However, as a
+        # /set/, ``tensor_products`` may still be minimal.
+        check = False
+
+    # Create the dual cone of the cross-positive operators,
+    # expressed as long vectors.
+    Sigma_dual = Cone(vectors, lattice=ToricLattice(W.dimension()), check=check)
 
     # Now compute the desired cone from its dual...
     Sigma_cone = Sigma_dual.dual()
 
     # And finally convert its rays back to matrix representations.
-    # But first, make them negative, so we get Z-transformations and
-    # not cross-positive ones.
     M = MatrixSpace(F, n)
-    return [ -M(v.list()) for v in Sigma_cone.rays() ]
+    return [ M(v.list()) for v in Sigma_cone ]
+
+
+def Z_operator_gens(K):
+    r"""
+    Compute generators of the cone of Z-operators on this cone.
+
+    The Z-operators on a cone generalize the Z-matrices over the
+    nonnegative orthant. They are simply negations of the
+    :meth:`cross_positive_operators`.
+
+    OUTPUT:
+
+    A list of `n`-by-``n`` matrices where ``n == K.lattice_dim()``.
+    Each matrix ``L`` in the list should have the property that
+    ``(L*x).inner_product(s) <= 0`` whenever ``(x,s)`` is an element of
+    this cone's :meth:`discrete_complementarity_set`. Moreover, any
+    conic (nonnegative linear) combination of these matrices shares the
+    same property.
+
+    .. SEEALSO::
+
+       :meth:`positive_operator_gens`, :meth:`cross_positive_operator_gens`,
+
+    TESTS:
+
+    The Z-property is possessed by every Z-operator::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: Z_of_K = Z_operator_gens(K)
+        sage: dcs = K.discrete_complementarity_set()
+        sage: all([(z*x).inner_product(s) <= 0 for z in Z_of_K
+        ....:                                  for (x,s) in dcs])
+        True
+    """
+    return [ -cp for cp in cross_positive_operator_gens(K) ]
+
+
+def LL_cone(K):
+    gens = K.lyapunov_like_basis()
+    L = ToricLattice(K.lattice_dim()**2)
+    return Cone([ g.list() for g in gens ], lattice=L, check=False)
+
+def Sigma_cone(K):
+    gens = cross_positive_operator_gens(K)
+    L = ToricLattice(K.lattice_dim()**2)
+    return Cone([ g.list() for g in gens ], lattice=L, check=False)
+
+def Z_cone(K):
+    gens = Z_operator_gens(K)
+    L = ToricLattice(K.lattice_dim()**2)
+    return Cone([ g.list() for g in gens ], lattice=L, check=False)
+
+def pi_cone(K):
+    gens = positive_operator_gens(K)
+    L = ToricLattice(K.lattice_dim()**2)
+    return Cone([ g.list() for g in gens ], lattice=L, check=False)