1 -- | The FunctionValues module contains the 'FunctionValues' type and
2 -- the functions used to manipulate it.
3 module FunctionValues (
10 function_values_properties,
15 import Prelude hiding (LT)
17 import Test.Framework (Test, testGroup)
18 import Test.Framework.Providers.HUnit (testCase)
19 import Test.Framework.Providers.QuickCheck2 (testProperty)
20 import Test.QuickCheck (Arbitrary(..), choose)
22 import Assertions (assertTrue)
23 import Cardinal ( Cardinal(..), cwx, cwy, cwz )
24 import Examples (trilinear)
25 import Values (Values3D, dims, idx)
27 -- | The FunctionValues type represents the value of our function f at
28 -- the 27 points surrounding (and including) the center of a
29 -- cube. Each value of f can be accessed by the name of its
32 FunctionValues { front :: Double,
39 front_right :: Double,
50 front_left_down :: Double,
51 front_left_top :: Double,
52 front_right_down :: Double,
53 front_right_top :: Double,
54 back_left_down :: Double,
55 back_left_top :: Double,
56 back_right_down :: Double,
57 back_right_top :: Double,
62 instance Arbitrary FunctionValues where
64 front' <- choose (min_double, max_double)
65 back' <- choose (min_double, max_double)
66 left' <- choose (min_double, max_double)
67 right' <- choose (min_double, max_double)
68 top' <- choose (min_double, max_double)
69 down' <- choose (min_double, max_double)
70 front_left' <- choose (min_double, max_double)
71 front_right' <- choose (min_double, max_double)
72 front_top' <- choose (min_double, max_double)
73 front_down' <- choose (min_double, max_double)
74 back_left' <- choose (min_double, max_double)
75 back_right' <- choose (min_double, max_double)
76 back_top' <- choose (min_double, max_double)
77 back_down' <- choose (min_double, max_double)
78 left_top' <- choose (min_double, max_double)
79 left_down' <- choose (min_double, max_double)
80 right_top' <- choose (min_double, max_double)
81 right_down' <- choose (min_double, max_double)
82 front_left_top' <- choose (min_double, max_double)
83 front_left_down' <- choose (min_double, max_double)
84 front_right_top' <- choose (min_double, max_double)
85 front_right_down' <- choose (min_double, max_double)
86 back_left_top' <- choose (min_double, max_double)
87 back_left_down' <- choose (min_double, max_double)
88 back_right_top' <- choose (min_double, max_double)
89 back_right_down' <- choose (min_double, max_double)
90 interior' <- choose (min_double, max_double)
92 return empty_values { front = front',
98 front_left = front_left',
99 front_right = front_right',
100 front_top = front_top',
101 front_down = front_down',
102 back_left = back_left',
103 back_right = back_right',
104 back_top = back_top',
105 back_down = back_down',
106 left_top = left_top',
107 left_down = left_down',
108 right_top = right_top',
109 right_down = right_down',
110 front_left_top = front_left_top',
111 front_left_down = front_left_down',
112 front_right_top = front_right_top',
113 front_right_down = front_right_down',
114 back_left_top = back_left_top',
115 back_left_down = back_left_down',
116 back_right_top = back_right_top',
117 back_right_down = back_right_down',
118 interior = interior' }
120 -- | We perform addition with the function values contained in a
121 -- FunctionValues object. If we choose random doubles near the machine
122 -- min/max, we risk overflowing or underflowing the 'Double'. This
123 -- places a reasonably safe limit on the maximum size of our generated
128 -- | See 'max_double'.
130 min_double = (-1) * max_double
133 -- | Return a 'FunctionValues' with a bunch of zeros for data points.
134 empty_values :: FunctionValues
136 FunctionValues 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
138 -- | The eval function is where the magic happens for the
139 -- FunctionValues type. Given a 'Cardinal' direction and a
140 -- 'FunctionValues' object, eval will return the value of the
141 -- function f in that 'Cardinal' direction. Note that 'Cardinal' can
142 -- be a composite type; eval is what performs the \"arithmetic\" on
143 -- 'Cardinal' directions.
144 eval :: FunctionValues -> Cardinal -> Double
151 eval f FL = front_left f
152 eval f FR = front_right f
153 eval f FD = front_down f
154 eval f FT = front_top f
155 eval f BL = back_left f
156 eval f BR = back_right f
157 eval f BD = back_down f
158 eval f BT = back_top f
159 eval f LD = left_down f
160 eval f LT = left_top f
161 eval f RD = right_down f
162 eval f RT = right_top f
163 eval f FLD = front_left_down f
164 eval f FLT = front_left_top f
165 eval f FRD = front_right_down f
166 eval f FRT = front_right_top f
167 eval f BLD = back_left_down f
168 eval f BLT = back_left_top f
169 eval f BRD = back_right_down f
170 eval f BRT = back_right_top f
171 eval f I = interior f
172 eval _ (Scalar x) = x
173 eval f (Sum x y) = (eval f x) + (eval f y)
174 eval f (Difference x y) = (eval f x) - (eval f y)
175 eval f (Product x y) = (eval f x) * (eval f y)
176 eval f (Quotient x y) = (eval f x) / (eval f y)
178 -- | Takes a three-dimensional list of 'Double' and a set of 3D
179 -- coordinates (i,j,k), and returns the value at (i,j,k) in the
180 -- supplied list. If there is no such value, we choose a nearby
181 -- point and use its value.
185 -- >>> value_at Examples.trilinear 0 0 0
188 -- >>> value_at Examples.trilinear (-1) 0 0
191 -- >>> value_at Examples.trilinear 0 0 4
194 -- >>> value_at Examples.trilinear 1 3 0
197 value_at :: Values3D -> Int -> Int -> Int -> Double
199 | i < 0 = value_at v3d 0 j k
200 | j < 0 = value_at v3d i 0 k
201 | k < 0 = value_at v3d i j 0
202 | xsize <= i = value_at v3d (xsize - 1) j k
203 | ysize <= j = value_at v3d i (ysize - 1) k
204 | zsize <= k = value_at v3d i j (zsize - 1)
205 | otherwise = idx v3d i j k
207 (xsize, ysize, zsize) = dims v3d
210 -- | Given a three-dimensional list of 'Double' and a set of 3D
211 -- coordinates (i,j,k), constructs and returns the 'FunctionValues'
212 -- object centered at (i,j,k)
213 make_values :: Values3D -> Int -> Int -> Int -> FunctionValues
214 make_values values i j k =
215 empty_values { front = value_at values (i-1) j k,
216 back = value_at values (i+1) j k,
217 left = value_at values i (j-1) k,
218 right = value_at values i (j+1) k,
219 down = value_at values i j (k-1),
220 top = value_at values i j (k+1),
221 front_left = value_at values (i-1) (j-1) k,
222 front_right = value_at values (i-1) (j+1) k,
223 front_down =value_at values (i-1) j (k-1),
224 front_top = value_at values (i-1) j (k+1),
225 back_left = value_at values (i+1) (j-1) k,
226 back_right = value_at values (i+1) (j+1) k,
227 back_down = value_at values (i+1) j (k-1),
228 back_top = value_at values (i+1) j (k+1),
229 left_down = value_at values i (j-1) (k-1),
230 left_top = value_at values i (j-1) (k+1),
231 right_down = value_at values i (j+1) (k-1),
232 right_top = value_at values i (j+1) (k+1),
233 front_left_down = value_at values (i-1) (j-1) (k-1),
234 front_left_top = value_at values (i-1) (j-1) (k+1),
235 front_right_down = value_at values (i-1) (j+1) (k-1),
236 front_right_top = value_at values (i-1) (j+1) (k+1),
237 back_left_down = value_at values (i+1) (j-1) (k-1),
238 back_left_top = value_at values (i+1) (j-1) (k+1),
239 back_right_down = value_at values (i+1) (j+1) (k-1),
240 back_right_top = value_at values (i+1) (j+1) (k+1),
241 interior = value_at values i j k }
243 -- | Takes a 'FunctionValues' and a function that transforms one
244 -- 'Cardinal' to another (called a rotation). Then it applies the
245 -- rotation to each element of the 'FunctionValues' object, and
246 -- returns the result.
247 rotate :: (Cardinal -> Cardinal) -> FunctionValues -> FunctionValues
249 FunctionValues { front = eval fv (rotation F),
250 back = eval fv (rotation B),
251 left = eval fv (rotation L),
252 right = eval fv (rotation R),
253 down = eval fv (rotation D),
254 top = eval fv (rotation T),
255 front_left = eval fv (rotation FL),
256 front_right = eval fv (rotation FR),
257 front_down = eval fv (rotation FD),
258 front_top = eval fv (rotation FT),
259 back_left = eval fv (rotation BL),
260 back_right = eval fv (rotation BR),
261 back_down = eval fv (rotation BD),
262 back_top = eval fv (rotation BT),
263 left_down = eval fv (rotation LD),
264 left_top = eval fv (rotation LT),
265 right_down = eval fv (rotation RD),
266 right_top = eval fv (rotation RT),
267 front_left_down = eval fv (rotation FLD),
268 front_left_top = eval fv (rotation FLT),
269 front_right_down = eval fv (rotation FRD),
270 front_right_top = eval fv (rotation FRT),
271 back_left_down = eval fv (rotation BLD),
272 back_left_top = eval fv (rotation BLT),
273 back_right_down = eval fv (rotation BRD),
274 back_right_top = eval fv (rotation BRT),
275 interior = interior fv }
279 -- | Ensure that the trilinear values wind up where we think they
281 test_directions :: Assertion
283 assertTrue "all direction functions work" (and equalities)
285 fvs = make_values trilinear 1 1 1
286 equalities = [ interior fvs == 4,
294 front_right fvs == 1,
298 back_right fvs == 11,
305 front_left_down fvs == 1,
306 front_left_top fvs == 1,
307 front_right_down fvs == 1,
308 front_right_top fvs == 1,
309 back_left_down fvs == 3,
310 back_left_top fvs == 3,
311 back_right_down fvs == 7,
312 back_right_top fvs == 15]
315 function_values_tests :: Test.Framework.Test
316 function_values_tests =
317 testGroup "FunctionValues Tests"
318 [ testCase "test directions" test_directions ]
321 prop_x_rotation_doesnt_affect_front :: FunctionValues -> Bool
322 prop_x_rotation_doesnt_affect_front fv0 =
329 prop_x_rotation_doesnt_affect_back :: FunctionValues -> Bool
330 prop_x_rotation_doesnt_affect_back fv0 =
338 prop_y_rotation_doesnt_affect_left :: FunctionValues -> Bool
339 prop_y_rotation_doesnt_affect_left fv0 =
346 prop_y_rotation_doesnt_affect_right :: FunctionValues -> Bool
347 prop_y_rotation_doesnt_affect_right fv0 =
355 prop_z_rotation_doesnt_affect_down :: FunctionValues -> Bool
356 prop_z_rotation_doesnt_affect_down fv0 =
364 prop_z_rotation_doesnt_affect_top :: FunctionValues -> Bool
365 prop_z_rotation_doesnt_affect_top fv0 =
373 function_values_properties :: Test.Framework.Test
374 function_values_properties =
375 let tp = testProperty
377 testGroup "FunctionValues Properties" [
378 tp "x rotation doesn't affect front" prop_x_rotation_doesnt_affect_front,
379 tp "x rotation doesn't affect back" prop_x_rotation_doesnt_affect_back,
380 tp "y rotation doesn't affect left" prop_y_rotation_doesnt_affect_left,
381 tp "y rotation doesn't affect right" prop_y_rotation_doesnt_affect_right,
382 tp "z rotation doesn't affect top" prop_z_rotation_doesnt_affect_top,
383 tp "z rotation doesn't affect down" prop_z_rotation_doesnt_affect_down ]