X-Git-Url: http://gitweb.michael.orlitzky.com/?p=spline3.git;a=blobdiff_plain;f=src%2FGrid.hs;h=269b37cec68d5c2f6211971dc1af32316b86c7ae;hp=893fe5c360d3f39c73a99ebab26d1320fd798815;hb=fd3d394c27e3a90de8238b98bd112c4fe3468ee0;hpb=89a8f8f3728c6e8730a37304708312b67bc23274 diff --git a/src/Grid.hs b/src/Grid.hs index 893fe5c..269b37c 100644 --- a/src/Grid.hs +++ b/src/Grid.hs @@ -1,109 +1,83 @@ --- | The Grid module just contains the Grid type and two constructors --- for it. We hide the main Grid constructor because we don't want --- to allow instantiation of a grid with h <= 0. +{-# LANGUAGE BangPatterns #-} +-- | The Grid module contains the Grid type, its tests, and the 'zoom' +-- function used to build the interpolation. module Grid ( cube_at, grid_tests, - make_grid, slow_tests, zoom ) where -import Data.Array (Array, array, (!)) import qualified Data.Array.Repa as R -import Test.HUnit +import qualified Data.Array.Repa.Operators.Traversal as R (unsafeTraverse) +import Test.HUnit (Assertion, assertEqual) import Test.Framework (Test, testGroup) import Test.Framework.Providers.HUnit (testCase) import Test.Framework.Providers.QuickCheck2 (testProperty) -import Test.QuickCheck (Arbitrary(..), Gen, Positive(..), choose) - -import Assertions -import Comparisons +import Test.QuickCheck ((==>), + Arbitrary(..), + Gen, + Property, + choose, + vectorOf) +import Assertions (assertAlmostEqual, assertTrue) +import Comparisons ((~=)) import Cube (Cube(Cube), find_containing_tetrahedron, tetrahedra, tetrahedron) -import Examples -import FunctionValues -import Point (Point) -import PolynomialArray (PolynomialArray) -import ScaleFactor -import Tetrahedron (Tetrahedron, c, number, polynomial, v0, v1, v2, v3) -import ThreeDimensional +import Examples (trilinear, trilinear9x9x9, zeros) +import FunctionValues (make_values, value_at) +import Point (Point(..)) +import ScaleFactor (ScaleFactor) +import Tetrahedron ( + Tetrahedron(v0,v1,v2,v3), + c, + polynomial, + ) import Values (Values3D, dims, empty3d, zoom_shape) -type CubeGrid = Array (Int,Int,Int) Cube - - -- | Our problem is defined on a Grid. The grid size is given by the --- positive number h. The function values are the values of the --- function at the grid points, which are distance h from one --- another in each direction (x,y,z). -data Grid = Grid { h :: Double, -- MUST BE GREATER THAN ZERO! - function_values :: Values3D, - cube_grid :: CubeGrid } - deriving (Eq, Show) +-- positive number h, which we have defined to always be 1 for +-- performance reasons (and simplicity). The function values are the +-- values of the function at the grid points, which are distance h=1 +-- from one another in each direction (x,y,z). +data Grid = Grid { function_values :: Values3D } + deriving (Show) instance Arbitrary Grid where arbitrary = do - (Positive h') <- arbitrary :: Gen (Positive Double) - fvs <- arbitrary :: Gen Values3D - return (make_grid h' fvs) - - --- | The constructor that we want people to use. If we're passed a --- non-positive grid size, we throw an error. -make_grid :: Double -> Values3D -> Grid -make_grid grid_size values - | grid_size <= 0 = error "grid size must be positive" - | otherwise = Grid grid_size values (cubes grid_size values) - - --- | Returns a three-dimensional array of cubes centered on the grid --- points (h*i, h*j, h*k) with the appropriate 'FunctionValues'. -cubes :: Double -> Values3D -> CubeGrid -cubes delta fvs - = array (lbounds, ubounds) - [ ((i,j,k), cube_ijk) - | i <- [0..xmax], - j <- [0..ymax], - k <- [0..zmax], - let tet_vol = (1/24)*(delta^(3::Int)), - let cube_ijk = - Cube delta i j k (make_values fvs i j k) tet_vol] - where - xmax = xsize - 1 - ymax = ysize - 1 - zmax = zsize - 1 - lbounds = (0, 0, 0) - ubounds = (xmax, ymax, zmax) - (xsize, ysize, zsize) = dims fvs + x_dim <- choose (1, 27) + y_dim <- choose (1, 27) + z_dim <- choose (1, 27) + elements <- vectorOf (x_dim * y_dim * z_dim) (arbitrary :: Gen Double) + let new_shape = (R.Z R.:. x_dim R.:. y_dim R.:. z_dim) + let fvs = R.fromListUnboxed new_shape elements + return $ Grid fvs + -- | Takes a grid and a position as an argument and returns the cube --- centered on that position. If there is no cube there (i.e. the --- position is outside of the grid), it will throw an error. +-- centered on that position. If there is no cube there, well, you +-- shouldn't have done that. The omitted "otherwise" case actually +-- does improve performance. cube_at :: Grid -> Int -> Int -> Int -> Cube -cube_at g i j k - | i < 0 = error "i < 0 in cube_at" - | i >= xsize = error "i >= xsize in cube_at" - | j < 0 = error "j < 0 in cube_at" - | j >= ysize = error "j >= ysize in cube_at" - | k < 0 = error "k < 0 in cube_at" - | k >= zsize = error "k >= zsize in cube_at" - | otherwise = (cube_grid g) ! (i,j,k) - where - fvs = function_values g - (xsize, ysize, zsize) = dims fvs - --- The first cube along any axis covers (-h/2, h/2). The second --- covers (h/2, 3h/2). The third, (3h/2, 5h/2), and so on. +cube_at !g !i !j !k = + Cube i j k fvs' tet_vol + where + fvs = function_values g + fvs' = make_values fvs i j k + tet_vol = 1/24 + + +-- The first cube along any axis covers (-1/2, 1/2). The second +-- covers (1/2, 3/2). The third, (3/2, 5/2), and so on. -- --- We translate the (x,y,z) coordinates forward by 'h/2' so that the --- first covers (0, h), the second covers (h, 2h), etc. This makes +-- We translate the (x,y,z) coordinates forward by 1/2 so that the +-- first covers (0, 1), the second covers (1, 2), etc. This makes -- it easy to figure out which cube contains the given point. calculate_containing_cube_coordinate :: Grid -> Double -> Int calculate_containing_cube_coordinate g coord @@ -112,59 +86,57 @@ calculate_containing_cube_coordinate g coord -- exists. | coord < offset = 0 | coord == offset && (xsize > 1 && ysize > 1 && zsize > 1) = 1 - | otherwise = (ceiling ( (coord + offset) / cube_width )) - 1 + | otherwise = (ceiling (coord + offset)) - 1 where (xsize, ysize, zsize) = dims (function_values g) - cube_width = (h g) - offset = cube_width / 2 + offset = 1/2 -- | Takes a 'Grid', and returns a 'Cube' containing the given 'Point'. -- Since our grid is rectangular, we can figure this out without having -- to check every cube. find_containing_cube :: Grid -> Point -> Cube -find_containing_cube g p = +find_containing_cube g (Point x y z) = cube_at g i j k where - (x, y, z) = p i = calculate_containing_cube_coordinate g x j = calculate_containing_cube_coordinate g y k = calculate_containing_cube_coordinate g z -{-# INLINE zoom_lookup #-} -zoom_lookup :: Grid -> PolynomialArray -> ScaleFactor -> a -> (R.DIM3 -> Double) -zoom_lookup g polynomials scale_factor _ = - zoom_result g polynomials scale_factor +zoom_lookup :: Values3D -> ScaleFactor -> a -> (R.DIM3 -> Double) +zoom_lookup v3d scale_factor _ = + zoom_result v3d scale_factor -{-# INLINE zoom_result #-} -zoom_result :: Grid -> PolynomialArray -> ScaleFactor -> R.DIM3 -> Double -zoom_result g polynomials (sfx, sfy, sfz) (R.Z R.:. m R.:. n R.:. o) = - (polynomials ! (i, j, k, (number t))) p +zoom_result :: Values3D -> ScaleFactor -> R.DIM3 -> Double +zoom_result v3d (sfx, sfy, sfz) (R.Z R.:. m R.:. n R.:. o) = + f p where - offset = (h g)/2 + g = Grid v3d + offset = 1/2 m' = (fromIntegral m) / (fromIntegral sfx) - offset n' = (fromIntegral n) / (fromIntegral sfy) - offset o' = (fromIntegral o) / (fromIntegral sfz) - offset - p = (m', n', o') :: Point + p = Point m' n' o' cube = find_containing_cube g p - -- Figure out i,j,k without importing those functions. - Cube _ i j k _ _ = cube t = find_containing_tetrahedron cube p - - -zoom :: Grid -> PolynomialArray -> ScaleFactor -> Values3D -zoom g polynomials scale_factor - | xsize == 0 || ysize == 0 || zsize == 0 = empty3d - | otherwise = - R.force $ R.traverse arr transExtent (zoom_lookup g polynomials scale_factor) - where - arr = function_values g - (xsize, ysize, zsize) = dims arr - transExtent = zoom_shape scale_factor + f = polynomial t +-- +-- Instead of IO, we could get away with a generic monad 'm' +-- here. However, /we/ only call this function from within IO. +-- +zoom :: Values3D -> ScaleFactor -> IO Values3D +zoom v3d scale_factor + | xsize == 0 || ysize == 0 || zsize == 0 = return empty3d + | otherwise = + R.computeUnboxedP $ R.unsafeTraverse v3d transExtent f + where + (xsize, ysize, zsize) = dims v3d + transExtent = zoom_shape scale_factor + f = zoom_lookup v3d scale_factor -- | Check all coefficients of tetrahedron0 belonging to the cube @@ -206,7 +178,7 @@ trilinear_c0_t0_tests = testCase "v3 is correct" test_trilinear_f0_t0_v3] ] where - g = make_grid 1 trilinear + g = Grid trilinear cube = cube_at g 1 1 1 t = tetrahedron cube 0 @@ -292,60 +264,62 @@ trilinear_c0_t0_tests = test_trilinear_f0_t0_v0 :: Assertion test_trilinear_f0_t0_v0 = - assertEqual "v0 is correct" (v0 t) (1, 1, 1) + assertEqual "v0 is correct" (v0 t) (Point 1 1 1) test_trilinear_f0_t0_v1 :: Assertion test_trilinear_f0_t0_v1 = - assertEqual "v1 is correct" (v1 t) (0.5, 1, 1) + assertEqual "v1 is correct" (v1 t) (Point 0.5 1 1) test_trilinear_f0_t0_v2 :: Assertion test_trilinear_f0_t0_v2 = - assertEqual "v2 is correct" (v2 t) (0.5, 0.5, 1.5) + assertEqual "v2 is correct" (v2 t) (Point 0.5 0.5 1.5) test_trilinear_f0_t0_v3 :: Assertion test_trilinear_f0_t0_v3 = - assertClose "v3 is correct" (v3 t) (0.5, 1.5, 1.5) + assertEqual "v3 is correct" (v3 t) (Point 0.5 1.5 1.5) test_trilinear_reproduced :: Assertion test_trilinear_reproduced = assertTrue "trilinears are reproduced correctly" $ - and [p (i', j', k') ~= value_at trilinear i j k + and [p (Point i' j' k') ~= value_at trilinear i j k | i <- [0..2], j <- [0..2], k <- [0..2], + c0 <- cs, t <- tetrahedra c0, let p = polynomial t, let i' = fromIntegral i, let j' = fromIntegral j, let k' = fromIntegral k] where - g = make_grid 1 trilinear - c0 = cube_at g 1 1 1 + g = Grid trilinear + cs = [ cube_at g ci cj ck | ci <- [0..2], cj <- [0..2], ck <- [0..2] ] test_zeros_reproduced :: Assertion test_zeros_reproduced = assertTrue "the zero function is reproduced correctly" $ - and [p (i', j', k') ~= value_at zeros i j k + and [p (Point i' j' k') ~= value_at zeros i j k | i <- [0..2], j <- [0..2], k <- [0..2], let i' = fromIntegral i, let j' = fromIntegral j, - let k' = fromIntegral k] + let k' = fromIntegral k, + c0 <- cs, + t0 <- tetrahedra c0, + let p = polynomial t0 ] where - g = make_grid 1 zeros - c0 = cube_at g 1 1 1 - t0 = tetrahedron c0 0 - p = polynomial t0 + g = Grid zeros + cs = [ cube_at g ci cj ck | ci <- [0..2], cj <- [0..2], ck <- [0..2] ] -- | Make sure we can reproduce a 9x9x9 trilinear from the 3x3x3 one. test_trilinear9x9x9_reproduced :: Assertion test_trilinear9x9x9_reproduced = assertTrue "trilinear 9x9x9 is reproduced correctly" $ - and [p (i', j', k') ~= value_at trilinear9x9x9 i j k + and [p (Point i' j' k') ~= value_at trilinear9x9x9 i j k | i <- [0..8], j <- [0..8], k <- [0..8], @@ -355,40 +329,20 @@ test_trilinear9x9x9_reproduced = let j' = (fromIntegral j) * 0.5, let k' = (fromIntegral k) * 0.5] where - g = make_grid 1 trilinear + g = Grid trilinear c0 = cube_at g 1 1 1 --- | The point 'p' in this test lies on the boundary of tetrahedra 12 and 15. --- However, the 'contains_point' test fails due to some numerical innacuracy. --- This bug should have been fixed by setting a positive tolerance level. --- --- Example from before the fix: --- --- b1 (tetrahedron c 20) (0, 17.5, 0.5) --- -0.0 --- -test_tetrahedra_collision_sensitivity :: Assertion -test_tetrahedra_collision_sensitivity = - assertTrue "tetrahedron collision tests isn't too sensitive" $ - contains_point t20 p - where - g = make_grid 1 naturals_1d - cube = cube_at g 0 18 0 - p = (0, 17.5, 0.5) :: Point - t20 = tetrahedron cube 20 - prop_cube_indices_never_go_out_of_bounds :: Grid -> Gen Bool prop_cube_indices_never_go_out_of_bounds g = do - let delta = Grid.h g - let coordmin = negate (delta/2) + let coordmin = negate (1/2) let (xsize, ysize, zsize) = dims $ function_values g - let xmax = delta*(fromIntegral xsize) - (delta/2) - let ymax = delta*(fromIntegral ysize) - (delta/2) - let zmax = delta*(fromIntegral zsize) - (delta/2) + let xmax = (fromIntegral xsize) - (1/2) + let ymax = (fromIntegral ysize) - (1/2) + let zmax = (fromIntegral zsize) - (1/2) x <- choose (coordmin, xmax) y <- choose (coordmin, ymax) @@ -407,21 +361,125 @@ prop_cube_indices_never_go_out_of_bounds g = idx_z <= zsize - 1 +-- | Given in Sorokina and Zeilfelder, p. 80, (2.9). Note that the +-- third and fourth indices of c-t10 have been switched. This is +-- because we store the triangles oriented such that their volume is +-- positive. If T and T-tilde share \ and v0,v0-tilde point +-- in opposite directions, one of them has to have negative volume! +prop_c0120_identity :: Grid -> Property +prop_c0120_identity g = + xsize >= 3 && ysize >= 3 && zsize >= 3 ==> + c t0 0 1 2 0 ~= (c t0 1 0 2 0 + c t10 1 0 0 2) / 2 + where + fvs = function_values g + (xsize, ysize, zsize) = dims fvs + cube0 = cube_at g 1 1 1 + cube1 = cube_at g 0 1 1 + t0 = tetrahedron cube0 0 -- These two tetrahedra share a face. + t10 = tetrahedron cube1 10 + + +-- | Given in Sorokina and Zeilfelder, p. 80, (2.9). See +-- 'prop_c0120_identity'. +prop_c0111_identity :: Grid -> Property +prop_c0111_identity g = + xsize >= 3 && ysize >= 3 && zsize >= 3 ==> + c t0 0 1 1 1 ~= (c t0 1 0 1 1 + c t10 1 0 1 1) / 2 + where + fvs = function_values g + (xsize, ysize, zsize) = dims fvs + cube0 = cube_at g 1 1 1 + cube1 = cube_at g 0 1 1 + t0 = tetrahedron cube0 0 -- These two tetrahedra share a face. + t10 = tetrahedron cube1 10 + + +-- | Given in Sorokina and Zeilfelder, p. 80, (2.9). See +-- 'prop_c0120_identity'. +prop_c0201_identity :: Grid -> Property +prop_c0201_identity g = + xsize >= 3 && ysize >= 3 && zsize >= 3 ==> + c t0 0 2 0 1 ~= (c t0 1 1 0 1 + c t10 1 1 1 0) / 2 + where + fvs = function_values g + (xsize, ysize, zsize) = dims fvs + cube0 = cube_at g 1 1 1 + cube1 = cube_at g 0 1 1 + t0 = tetrahedron cube0 0 -- These two tetrahedra share a face. + t10 = tetrahedron cube1 10 + + +-- | Given in Sorokina and Zeilfelder, p. 80, (2.9). See +-- 'prop_c0120_identity'. +prop_c0102_identity :: Grid -> Property +prop_c0102_identity g = + xsize >= 3 && ysize >= 3 && zsize >= 3 ==> + c t0 0 1 0 2 ~= (c t0 1 0 0 2 + c t10 1 0 2 0) / 2 + where + fvs = function_values g + (xsize, ysize, zsize) = dims fvs + cube0 = cube_at g 1 1 1 + cube1 = cube_at g 0 1 1 + t0 = tetrahedron cube0 0 -- These two tetrahedra share a face. + t10 = tetrahedron cube1 10 + + +-- | Given in Sorokina and Zeilfelder, p. 80, (2.9). See +-- 'prop_c0120_identity'. +prop_c0210_identity :: Grid -> Property +prop_c0210_identity g = + xsize >= 3 && ysize >= 3 && zsize >= 3 ==> + c t0 0 2 1 0 ~= (c t0 1 1 1 0 + c t10 1 1 0 1) / 2 + where + fvs = function_values g + (xsize, ysize, zsize) = dims fvs + cube0 = cube_at g 1 1 1 + cube1 = cube_at g 0 1 1 + t0 = tetrahedron cube0 0 -- These two tetrahedra share a face. + t10 = tetrahedron cube1 10 + + +-- | Given in Sorokina and Zeilfelder, p. 80, (2.9). See +-- 'prop_c0120_identity'. +prop_c0300_identity :: Grid -> Property +prop_c0300_identity g = + xsize >= 3 && ysize >= 3 && zsize >= 3 ==> + c t0 0 3 0 0 ~= (c t0 1 2 0 0 + c t10 1 2 0 0) / 2 + where + fvs = function_values g + (xsize, ysize, zsize) = dims fvs + cube0 = cube_at g 1 1 1 + cube1 = cube_at g 0 1 1 + t0 = tetrahedron cube0 0 -- These two tetrahedra share a face. + t10 = tetrahedron cube1 10 + + +-- | All of the properties from Section (2.9), p. 80. These require a +-- grid since they refer to two adjacent cubes. +p80_29_properties :: Test.Framework.Test +p80_29_properties = + testGroup "p. 80, Section (2.9) Properties" [ + testProperty "c0120 identity" prop_c0120_identity, + testProperty "c0111 identity" prop_c0111_identity, + testProperty "c0201 identity" prop_c0201_identity, + testProperty "c0102 identity" prop_c0102_identity, + testProperty "c0210 identity" prop_c0210_identity, + testProperty "c0300 identity" prop_c0300_identity ] + grid_tests :: Test.Framework.Test grid_tests = testGroup "Grid Tests" [ trilinear_c0_t0_tests, - testCase "tetrahedra collision test isn't too sensitive" - test_tetrahedra_collision_sensitivity, - testCase "trilinear reproduced" test_trilinear_reproduced, - testCase "zeros reproduced" test_zeros_reproduced ] + p80_29_properties, + testProperty "cube indices within bounds" + prop_cube_indices_never_go_out_of_bounds ] -- Do the slow tests last so we can stop paying attention. slow_tests :: Test.Framework.Test slow_tests = testGroup "Slow Tests" [ - testProperty "cube indices within bounds" - prop_cube_indices_never_go_out_of_bounds, - testCase "trilinear9x9x9 reproduced" test_trilinear9x9x9_reproduced ] + testCase "trilinear reproduced" test_trilinear_reproduced, + testCase "trilinear9x9x9 reproduced" test_trilinear9x9x9_reproduced, + testCase "zeros reproduced" test_zeros_reproduced ]