module Tests.Tetrahedron where import Test.HUnit import Test.QuickCheck import Comparisons import Point import FunctionValues import Tests.FunctionValues() import Tetrahedron import ThreeDimensional instance Arbitrary Tetrahedron where arbitrary = do rnd_v0 <- arbitrary :: Gen Point rnd_v1 <- arbitrary :: Gen Point rnd_v2 <- arbitrary :: Gen Point rnd_v3 <- arbitrary :: Gen Point rnd_fv <- arbitrary :: Gen FunctionValues return (Tetrahedron rnd_fv rnd_v0 rnd_v1 rnd_v2 rnd_v3) -- HUnit Tests -- Since p0, p1, p2 are in clockwise order, we expect the volume here -- to be negative. test_volume1 :: Test test_volume1 = TestCase $ assertEqual "volume is correct" True (vol ~= (-1/3)) where p0 = (0, -0.5, 0) p1 = (0, 0.5, 0) p2 = (2, 0, 0) p3 = (1, 0, 1) t = Tetrahedron { v0 = p0, v1 = p1, v2 = p2, v3 = p3, fv = empty_values } vol = volume t -- Now, p0, p1, and p2 are in counter-clockwise order. The volume -- should therefore be positive. test_volume2 :: Test test_volume2 = TestCase $ assertEqual "volume is correct" True (vol ~= (1/3)) where p0 = (0, -0.5, 0) p1 = (2, 0, 0) p2 = (0, 0.5, 0) p3 = (1, 0, 1) t = Tetrahedron { v0 = p0, v1 = p1, v2 = p2, v3 = p3, fv = empty_values } vol = volume t test_contains_point1 :: Test test_contains_point1 = TestCase $ assertEqual "contains an inner point" True (contains_point t inner_point) where p0 = (0, -0.5, 0) p1 = (0, 0.5, 0) p2 = (2, 0, 0) p3 = (1, 0, 1) inner_point = (1, 0, 0.5) t = Tetrahedron { v0 = p0, v1 = p1, v2 = p2, v3 = p3, fv = empty_values } test_doesnt_contain_point1 :: Test test_doesnt_contain_point1 = TestCase $ assertEqual "doesn't contain an exterior point" False (contains_point t exterior_point) where p0 = (0, -0.5, 0) p1 = (0, 0.5, 0) p2 = (2, 0, 0) p3 = (1, 0, 1) exterior_point = (5, 2, -9.0212) t = Tetrahedron { v0 = p0, v1 = p1, v2 = p2, v3 = p3, fv = empty_values } test_doesnt_contain_point2 :: Test test_doesnt_contain_point2 = TestCase $ assertEqual "doesn't contain an exterior point" False (contains_point t exterior_point) where p0 = (0, 1, 1) p1 = (1, 1, 1) p2 = (0.5, 0.5, 1) p3 = (0.5, 0.5, 0.5) exterior_point = (0, 0, 0) t = Tetrahedron { v0 = p0, v1 = p1, v2 = p2, v3 = p3, fv = empty_values } test_doesnt_contain_point3 :: Test test_doesnt_contain_point3 = TestCase $ assertEqual "doesn't contain an exterior point" False (contains_point t exterior_point) where p0 = (1, 1, 1) p1 = (1, 0, 1) p2 = (0.5, 0.5, 1) p3 = (0.5, 0.5, 0.5) exterior_point = (0, 0, 0) t = Tetrahedron { v0 = p0, v1 = p1, v2 = p2, v3 = p3, fv = empty_values } test_doesnt_contain_point4 :: Test test_doesnt_contain_point4 = TestCase $ assertEqual "doesn't contain an exterior point" False (contains_point t exterior_point) where p0 = (1, 0, 1) p1 = (0, 0, 1) p2 = (0.5, 0.5, 1) p3 = (0.5, 0.5, 0.5) exterior_point = (0, 0, 0) t = Tetrahedron { v0 = p0, v1 = p1, v2 = p2, v3 = p3, fv = empty_values } test_doesnt_contain_point5 :: Test test_doesnt_contain_point5 = TestCase $ assertEqual "doesn't contain an exterior point" False (contains_point t exterior_point) where p0 = (0, 0, 1) p1 = (0, 1, 1) p2 = (0.5, 0.5, 1) p3 = (0.5, 0.5, 0.5) exterior_point = (0, 0, 0) t = Tetrahedron { v0 = p0, v1 = p1, v2 = p2, v3 = p3, fv = empty_values } tetrahedron_tests :: [Test] tetrahedron_tests = [test_volume1, test_volume2, test_contains_point1, test_doesnt_contain_point1, test_doesnt_contain_point2, test_doesnt_contain_point3, test_doesnt_contain_point4, test_doesnt_contain_point5 ] prop_b0_v0_always_unity :: Tetrahedron -> Property prop_b0_v0_always_unity t = (volume t) > 0 ==> (b0 t) (v0 t) ~= 1.0 prop_b0_v1_always_zero :: Tetrahedron -> Property prop_b0_v1_always_zero t = (volume t) > 0 ==> (b0 t) (v1 t) ~= 0 prop_b0_v2_always_zero :: Tetrahedron -> Property prop_b0_v2_always_zero t = (volume t) > 0 ==> (b0 t) (v2 t) ~= 0 prop_b0_v3_always_zero :: Tetrahedron -> Property prop_b0_v3_always_zero t = (volume t) > 0 ==> (b0 t) (v3 t) ~= 0 prop_b1_v1_always_unity :: Tetrahedron -> Property prop_b1_v1_always_unity t = (volume t) > 0 ==> (b1 t) (v1 t) ~= 1.0 prop_b1_v0_always_zero :: Tetrahedron -> Property prop_b1_v0_always_zero t = (volume t) > 0 ==> (b1 t) (v0 t) ~= 0 prop_b1_v2_always_zero :: Tetrahedron -> Property prop_b1_v2_always_zero t = (volume t) > 0 ==> (b1 t) (v2 t) ~= 0 prop_b1_v3_always_zero :: Tetrahedron -> Property prop_b1_v3_always_zero t = (volume t) > 0 ==> (b1 t) (v3 t) ~= 0 prop_b2_v2_always_unity :: Tetrahedron -> Property prop_b2_v2_always_unity t = (volume t) > 0 ==> (b2 t) (v2 t) ~= 1.0 prop_b2_v0_always_zero :: Tetrahedron -> Property prop_b2_v0_always_zero t = (volume t) > 0 ==> (b2 t) (v0 t) ~= 0 prop_b2_v1_always_zero :: Tetrahedron -> Property prop_b2_v1_always_zero t = (volume t) > 0 ==> (b2 t) (v1 t) ~= 0 prop_b2_v3_always_zero :: Tetrahedron -> Property prop_b2_v3_always_zero t = (volume t) > 0 ==> (b2 t) (v3 t) ~= 0 prop_b3_v3_always_unity :: Tetrahedron -> Property prop_b3_v3_always_unity t = (volume t) > 0 ==> (b3 t) (v3 t) ~= 1.0 prop_b3_v0_always_zero :: Tetrahedron -> Property prop_b3_v0_always_zero t = (volume t) > 0 ==> (b3 t) (v0 t) ~= 0 prop_b3_v1_always_zero :: Tetrahedron -> Property prop_b3_v1_always_zero t = (volume t) > 0 ==> (b3 t) (v1 t) ~= 0 prop_b3_v2_always_zero :: Tetrahedron -> Property prop_b3_v2_always_zero t = (volume t) > 0 ==> (b3 t) (v2 t) ~= 0 -- Used for convenience in the next few tests. p :: Tetrahedron -> Int -> Int -> Int -> Int -> Double p t i j k l = (polynomial t) (xi t i j k l) -- | Given in Sorokina and Zeilfelder, p. 78. prop_c3000_identity :: Tetrahedron -> Property prop_c3000_identity t = (volume t) > 0 ==> c t 3 0 0 0 ~= p t 3 0 0 0 -- | Given in Sorokina and Zeilfelder, p. 78. prop_c2100_identity :: Tetrahedron -> Property prop_c2100_identity t = (volume t) > 0 ==> c t 2 1 0 0 ~= (term1 - term2 + term3 - term4) where term1 = (1/3)*(p t 0 3 0 0) term2 = (5/6)*(p t 3 0 0 0) term3 = 3*(p t 2 1 0 0) term4 = (3/2)*(p t 1 2 0 0) -- | Given in Sorokina and Zeilfelder, p. 78. prop_c1110_identity :: Tetrahedron -> Property prop_c1110_identity t = (volume t) > 0 ==> c t 1 1 1 0 ~= (term1 + term2 - term3 - term4) where term1 = (1/3)*((p t 3 0 0 0) + (p t 0 3 0 0) + (p t 0 0 3 0)) term2 = (9/2)*(p t 1 1 1 0) term3 = (3/4)*((p t 2 1 0 0) + (p t 1 2 0 0) + (p t 2 0 1 0)) term4 = (3/4)*((p t 1 0 2 0) + (p t 0 2 1 0) + (p t 0 1 2 0))