{-# LANGUAGE RecordWildCards, DoAndIfThenElse #-} module Main where import Data.Maybe (fromJust) import Control.Monad (when) import qualified Data.Array.Repa as R import Data.Maybe (isJust) import GHC.Conc (getNumProcessors, setNumCapabilities) import System.IO (hPutStrLn, stderr) import System.Exit (exitSuccess, exitWith, ExitCode(..)) import CommandLine (Args(..), apply_args) import ExitCodes import Grid (zoom) import MRI ( flip_x, flip_y, read_word16s, round_array, swap_bytes, write_values_slice_to_bitmap, write_word16s, z_slice ) validate_args :: Args -> IO () validate_args Args{..} = do when (scale <= 0) $ do hPutStrLn stderr "ERROR: scale must be greater than zero." exitWith (ExitFailure exit_arg_not_positive) when (width <= 0) $ do hPutStrLn stderr "ERROR: width must be greater than zero." exitWith (ExitFailure exit_arg_not_positive) when (height <= 0) $ do hPutStrLn stderr "ERROR: height must be greater than zero." exitWith (ExitFailure exit_arg_not_positive) when (depth <= 0) $ do hPutStrLn stderr "ERROR: depth must be greater than zero." exitWith (ExitFailure exit_arg_not_positive) case slice of Just s -> when (s < 0 || s > depth) $ do hPutStrLn stderr "ERROR: slice must be between zero and depth." exitWith (ExitFailure exit_arg_out_of_bounds) Nothing -> return () main :: IO () main = do args@Args{..} <- apply_args -- validate_args will simply exit if there's a problem. validate_args args -- The first thing we do is set the number of processors. We get the -- number of processors (cores) in the machine with -- getNumProcessors, and set it with setNumCapabilities. This is so -- we don't have to pass +RTS -Nfoo on the command line every time. num_procs <- getNumProcessors setNumCapabilities num_procs -- Determine whether we're doing 2d or 3d. If we're given a slice, -- assume 2d. let mri_shape = (R.Z R.:. depth R.:. height R.:. width) :: R.DIM3 if (isJust slice) then main2d args mri_shape else main3d args mri_shape exitSuccess where main3d :: Args -> R.DIM3 -> IO () main3d Args{..} mri_shape = do let zoom_factor = (scale, scale, scale) arr <- read_word16s input mri_shape let arr' = swap_bytes arr let arrMRI = R.reshape mri_shape arr' dbl_data <- R.computeUnboxedP $ R.map fromIntegral arrMRI raw_output <- zoom dbl_data zoom_factor word16_output <- R.computeUnboxedP $ round_array raw_output write_word16s output word16_output main2d :: Args -> R.DIM3 -> IO () main2d Args{..} mri_shape = do let zoom_factor = (1, scale, scale) arr <- read_word16s input mri_shape arrSlice <- R.computeUnboxedP $ z_slice (fromJust slice) $ flip_x width $ flip_y height $ swap_bytes arr let arrSlice' = R.reshape mri_slice3d arrSlice -- If zoom isn't being inlined we need to extract the slice before hand, -- and convert it to the require formed. dbl_data <- R.computeUnboxedP $ R.map fromIntegral arrSlice' raw_output <- zoom dbl_data zoom_factor arrSlice0 <- R.computeUnboxedP $ z_slice 0 raw_output write_values_slice_to_bitmap arrSlice0 output where mri_slice3d :: R.DIM3 mri_slice3d = (R.Z R.:. 1 R.:. height R.:. width)