{-# LANGUAGE BangPatterns #-} -- | The Grid module just contains the Grid type and two constructors -- for it. We hide the main Grid constructor because we don't want -- to allow instantiation of a grid with h <= 0. module Grid ( cube_at, grid_tests, make_grid, slow_tests, zoom ) where import qualified Data.Array.Repa as R import Test.HUnit (Assertion, assertEqual) import Test.Framework (Test, testGroup) import Test.Framework.Providers.HUnit (testCase) import Test.Framework.Providers.QuickCheck2 (testProperty) import Test.QuickCheck ((==>), Arbitrary(..), Gen, Positive(..), Property, choose) import Assertions (assertAlmostEqual, assertTrue) import Comparisons ((~=)) import Cube (Cube(Cube), find_containing_tetrahedron, tetrahedra, tetrahedron) import Examples (trilinear, trilinear9x9x9, zeros, naturals_1d) import FunctionValues (make_values, value_at) import Point (Point(..)) import ScaleFactor (ScaleFactor) import Tetrahedron (Tetrahedron, c, polynomial, v0, v1, v2, v3) import ThreeDimensional (ThreeDimensional(..)) import Values (Values3D, dims, empty3d, zoom_shape) -- | Our problem is defined on a Grid. The grid size is given by the -- positive number h. The function values are the values of the -- function at the grid points, which are distance h from one -- another in each direction (x,y,z). data Grid = Grid { h :: Double, -- MUST BE GREATER THAN ZERO! function_values :: Values3D } deriving (Show) instance Arbitrary Grid where arbitrary = do (Positive h') <- arbitrary :: Gen (Positive Double) fvs <- arbitrary :: Gen Values3D return (make_grid h' fvs) -- | The constructor that we want people to use. If we're passed a -- non-positive grid size, we throw an error. make_grid :: Double -> Values3D -> Grid make_grid grid_size values | grid_size <= 0 = error "grid size must be positive" | otherwise = Grid grid_size values -- | Takes a grid and a position as an argument and returns the cube -- centered on that position. If there is no cube there (i.e. the -- position is outside of the grid), it will throw an error. cube_at :: Grid -> Int -> Int -> Int -> Cube cube_at !g !i !j !k | i < 0 = error "i < 0 in cube_at" | i >= xsize = error "i >= xsize in cube_at" | j < 0 = error "j < 0 in cube_at" | j >= ysize = error "j >= ysize in cube_at" | k < 0 = error "k < 0 in cube_at" | k >= zsize = error "k >= zsize in cube_at" | otherwise = Cube delta i j k fvs' tet_vol where fvs = function_values g (xsize, ysize, zsize) = dims fvs fvs' = make_values fvs i j k delta = h g tet_vol = (1/24)*(delta^(3::Int)) -- The first cube along any axis covers (-h/2, h/2). The second -- covers (h/2, 3h/2). The third, (3h/2, 5h/2), and so on. -- -- We translate the (x,y,z) coordinates forward by 'h/2' so that the -- first covers (0, h), the second covers (h, 2h), etc. This makes -- it easy to figure out which cube contains the given point. calculate_containing_cube_coordinate :: Grid -> Double -> Int calculate_containing_cube_coordinate g coord -- Don't use a cube on the boundary if we can help it. This -- returns cube #1 if we would have returned cube #0 and cube #1 -- exists. | coord < offset = 0 | coord == offset && (xsize > 1 && ysize > 1 && zsize > 1) = 1 | otherwise = (ceiling ( (coord + offset) / cube_width )) - 1 where (xsize, ysize, zsize) = dims (function_values g) cube_width = (h g) offset = cube_width / 2 -- | Takes a 'Grid', and returns a 'Cube' containing the given 'Point'. -- Since our grid is rectangular, we can figure this out without having -- to check every cube. find_containing_cube :: Grid -> Point -> Cube find_containing_cube g (Point x y z) = cube_at g i j k where i = calculate_containing_cube_coordinate g x j = calculate_containing_cube_coordinate g y k = calculate_containing_cube_coordinate g z zoom_lookup :: Values3D -> ScaleFactor -> a -> (R.DIM3 -> Double) zoom_lookup v3d scale_factor _ = zoom_result v3d scale_factor zoom_result :: Values3D -> ScaleFactor -> R.DIM3 -> Double zoom_result v3d (sfx, sfy, sfz) (R.Z R.:. m R.:. n R.:. o) = f p where g = make_grid 1 v3d offset = (h g)/2 m' = (fromIntegral m) / (fromIntegral sfx) - offset n' = (fromIntegral n) / (fromIntegral sfy) - offset o' = (fromIntegral o) / (fromIntegral sfz) - offset p = Point m' n' o' cube = find_containing_cube g p t = find_containing_tetrahedron cube p f = polynomial t zoom :: Values3D -> ScaleFactor -> Values3D zoom v3d scale_factor | xsize == 0 || ysize == 0 || zsize == 0 = empty3d | otherwise = R.force $ R.unsafeTraverse v3d transExtent f where (xsize, ysize, zsize) = dims v3d transExtent = zoom_shape scale_factor f = zoom_lookup v3d scale_factor -- | Check all coefficients of tetrahedron0 belonging to the cube -- centered on (1,1,1) with a grid constructed from the trilinear -- values. See example one in the paper. -- -- We also verify that the four vertices on face0 of the cube are -- in the correct location. -- trilinear_c0_t0_tests :: Test.Framework.Test trilinear_c0_t0_tests = testGroup "trilinear c0 t0" [testGroup "coefficients" [testCase "c0030 is correct" test_trilinear_c0030, testCase "c0003 is correct" test_trilinear_c0003, testCase "c0021 is correct" test_trilinear_c0021, testCase "c0012 is correct" test_trilinear_c0012, testCase "c0120 is correct" test_trilinear_c0120, testCase "c0102 is correct" test_trilinear_c0102, testCase "c0111 is correct" test_trilinear_c0111, testCase "c0210 is correct" test_trilinear_c0210, testCase "c0201 is correct" test_trilinear_c0201, testCase "c0300 is correct" test_trilinear_c0300, testCase "c1020 is correct" test_trilinear_c1020, testCase "c1002 is correct" test_trilinear_c1002, testCase "c1011 is correct" test_trilinear_c1011, testCase "c1110 is correct" test_trilinear_c1110, testCase "c1101 is correct" test_trilinear_c1101, testCase "c1200 is correct" test_trilinear_c1200, testCase "c2010 is correct" test_trilinear_c2010, testCase "c2001 is correct" test_trilinear_c2001, testCase "c2100 is correct" test_trilinear_c2100, testCase "c3000 is correct" test_trilinear_c3000], testGroup "face0 vertices" [testCase "v0 is correct" test_trilinear_f0_t0_v0, testCase "v1 is correct" test_trilinear_f0_t0_v1, testCase "v2 is correct" test_trilinear_f0_t0_v2, testCase "v3 is correct" test_trilinear_f0_t0_v3] ] where g = make_grid 1 trilinear cube = cube_at g 1 1 1 t = tetrahedron cube 0 test_trilinear_c0030 :: Assertion test_trilinear_c0030 = assertAlmostEqual "c0030 is correct" (c t 0 0 3 0) (17/8) test_trilinear_c0003 :: Assertion test_trilinear_c0003 = assertAlmostEqual "c0003 is correct" (c t 0 0 0 3) (27/8) test_trilinear_c0021 :: Assertion test_trilinear_c0021 = assertAlmostEqual "c0021 is correct" (c t 0 0 2 1) (61/24) test_trilinear_c0012 :: Assertion test_trilinear_c0012 = assertAlmostEqual "c0012 is correct" (c t 0 0 1 2) (71/24) test_trilinear_c0120 :: Assertion test_trilinear_c0120 = assertAlmostEqual "c0120 is correct" (c t 0 1 2 0) (55/24) test_trilinear_c0102 :: Assertion test_trilinear_c0102 = assertAlmostEqual "c0102 is correct" (c t 0 1 0 2) (73/24) test_trilinear_c0111 :: Assertion test_trilinear_c0111 = assertAlmostEqual "c0111 is correct" (c t 0 1 1 1) (8/3) test_trilinear_c0210 :: Assertion test_trilinear_c0210 = assertAlmostEqual "c0210 is correct" (c t 0 2 1 0) (29/12) test_trilinear_c0201 :: Assertion test_trilinear_c0201 = assertAlmostEqual "c0201 is correct" (c t 0 2 0 1) (11/4) test_trilinear_c0300 :: Assertion test_trilinear_c0300 = assertAlmostEqual "c0300 is correct" (c t 0 3 0 0) (5/2) test_trilinear_c1020 :: Assertion test_trilinear_c1020 = assertAlmostEqual "c1020 is correct" (c t 1 0 2 0) (8/3) test_trilinear_c1002 :: Assertion test_trilinear_c1002 = assertAlmostEqual "c1002 is correct" (c t 1 0 0 2) (23/6) test_trilinear_c1011 :: Assertion test_trilinear_c1011 = assertAlmostEqual "c1011 is correct" (c t 1 0 1 1) (13/4) test_trilinear_c1110 :: Assertion test_trilinear_c1110 = assertAlmostEqual "c1110 is correct" (c t 1 1 1 0) (23/8) test_trilinear_c1101 :: Assertion test_trilinear_c1101 = assertAlmostEqual "c1101 is correct" (c t 1 1 0 1) (27/8) test_trilinear_c1200 :: Assertion test_trilinear_c1200 = assertAlmostEqual "c1200 is correct" (c t 1 2 0 0) 3 test_trilinear_c2010 :: Assertion test_trilinear_c2010 = assertAlmostEqual "c2010 is correct" (c t 2 0 1 0) (10/3) test_trilinear_c2001 :: Assertion test_trilinear_c2001 = assertAlmostEqual "c2001 is correct" (c t 2 0 0 1) 4 test_trilinear_c2100 :: Assertion test_trilinear_c2100 = assertAlmostEqual "c2100 is correct" (c t 2 1 0 0) (7/2) test_trilinear_c3000 :: Assertion test_trilinear_c3000 = assertAlmostEqual "c3000 is correct" (c t 3 0 0 0) 4 test_trilinear_f0_t0_v0 :: Assertion test_trilinear_f0_t0_v0 = assertEqual "v0 is correct" (v0 t) (Point 1 1 1) test_trilinear_f0_t0_v1 :: Assertion test_trilinear_f0_t0_v1 = assertEqual "v1 is correct" (v1 t) (Point 0.5 1 1) test_trilinear_f0_t0_v2 :: Assertion test_trilinear_f0_t0_v2 = assertEqual "v2 is correct" (v2 t) (Point 0.5 0.5 1.5) test_trilinear_f0_t0_v3 :: Assertion test_trilinear_f0_t0_v3 = assertEqual "v3 is correct" (v3 t) (Point 0.5 1.5 1.5) test_trilinear_reproduced :: Assertion test_trilinear_reproduced = assertTrue "trilinears are reproduced correctly" $ and [p (Point i' j' k') ~= value_at trilinear i j k | i <- [0..2], j <- [0..2], k <- [0..2], c0 <- cs, t <- tetrahedra c0, let p = polynomial t, let i' = fromIntegral i, let j' = fromIntegral j, let k' = fromIntegral k] where g = make_grid 1 trilinear cs = [ cube_at g ci cj ck | ci <- [0..2], cj <- [0..2], ck <- [0..2] ] test_zeros_reproduced :: Assertion test_zeros_reproduced = assertTrue "the zero function is reproduced correctly" $ and [p (Point i' j' k') ~= value_at zeros i j k | i <- [0..2], j <- [0..2], k <- [0..2], let i' = fromIntegral i, let j' = fromIntegral j, let k' = fromIntegral k, c0 <- cs, t0 <- tetrahedra c0, let p = polynomial t0 ] where g = make_grid 1 zeros cs = [ cube_at g ci cj ck | ci <- [0..2], cj <- [0..2], ck <- [0..2] ] -- | Make sure we can reproduce a 9x9x9 trilinear from the 3x3x3 one. test_trilinear9x9x9_reproduced :: Assertion test_trilinear9x9x9_reproduced = assertTrue "trilinear 9x9x9 is reproduced correctly" $ and [p (Point i' j' k') ~= value_at trilinear9x9x9 i j k | i <- [0..8], j <- [0..8], k <- [0..8], t <- tetrahedra c0, let p = polynomial t, let i' = (fromIntegral i) * 0.5, let j' = (fromIntegral j) * 0.5, let k' = (fromIntegral k) * 0.5] where g = make_grid 1 trilinear c0 = cube_at g 1 1 1 -- | The point 'p' in this test lies on the boundary of tetrahedra 12 and 15. -- However, the 'contains_point' test fails due to some numerical innacuracy. -- This bug should have been fixed by setting a positive tolerance level. -- -- Example from before the fix: -- -- b1 (tetrahedron c 20) (0, 17.5, 0.5) -- -0.0 -- test_tetrahedra_collision_sensitivity :: Assertion test_tetrahedra_collision_sensitivity = assertTrue "tetrahedron collision tests isn't too sensitive" $ contains_point t20 p where g = make_grid 1 naturals_1d cube = cube_at g 0 18 0 p = Point 0 17.5 0.5 t20 = tetrahedron cube 20 prop_cube_indices_never_go_out_of_bounds :: Grid -> Gen Bool prop_cube_indices_never_go_out_of_bounds g = do let delta = Grid.h g let coordmin = negate (delta/2) let (xsize, ysize, zsize) = dims $ function_values g let xmax = delta*(fromIntegral xsize) - (delta/2) let ymax = delta*(fromIntegral ysize) - (delta/2) let zmax = delta*(fromIntegral zsize) - (delta/2) x <- choose (coordmin, xmax) y <- choose (coordmin, ymax) z <- choose (coordmin, zmax) let idx_x = calculate_containing_cube_coordinate g x let idx_y = calculate_containing_cube_coordinate g y let idx_z = calculate_containing_cube_coordinate g z return $ idx_x >= 0 && idx_x <= xsize - 1 && idx_y >= 0 && idx_y <= ysize - 1 && idx_z >= 0 && idx_z <= zsize - 1 -- | Given in Sorokina and Zeilfelder, p. 80, (2.9). Note that the -- third and fourth indices of c-t10 have been switched. This is -- because we store the triangles oriented such that their volume is -- positive. If T and T-tilde share \ and v0,v0-tilde point -- in opposite directions, one of them has to have negative volume! prop_c0120_identity :: Grid -> Property prop_c0120_identity g = and [xsize >= 3, ysize >= 3, zsize >= 3] ==> c t0 0 1 2 0 ~= (c t0 1 0 2 0 + c t10 1 0 0 2) / 2 where fvs = function_values g (xsize, ysize, zsize) = dims fvs cube0 = cube_at g 1 1 1 cube1 = cube_at g 0 1 1 t0 = tetrahedron cube0 0 -- These two tetrahedra share a face. t10 = tetrahedron cube1 10 -- | Given in Sorokina and Zeilfelder, p. 80, (2.9). See -- 'prop_c0120_identity'. prop_c0111_identity :: Grid -> Property prop_c0111_identity g = and [xsize >= 3, ysize >= 3, zsize >= 3] ==> c t0 0 1 1 1 ~= (c t0 1 0 1 1 + c t10 1 0 1 1) / 2 where fvs = function_values g (xsize, ysize, zsize) = dims fvs cube0 = cube_at g 1 1 1 cube1 = cube_at g 0 1 1 t0 = tetrahedron cube0 0 -- These two tetrahedra share a face. t10 = tetrahedron cube1 10 -- | Given in Sorokina and Zeilfelder, p. 80, (2.9). See -- 'prop_c0120_identity'. prop_c0201_identity :: Grid -> Property prop_c0201_identity g = and [xsize >= 3, ysize >= 3, zsize >= 3] ==> c t0 0 2 0 1 ~= (c t0 1 1 0 1 + c t10 1 1 1 0) / 2 where fvs = function_values g (xsize, ysize, zsize) = dims fvs cube0 = cube_at g 1 1 1 cube1 = cube_at g 0 1 1 t0 = tetrahedron cube0 0 -- These two tetrahedra share a face. t10 = tetrahedron cube1 10 -- | Given in Sorokina and Zeilfelder, p. 80, (2.9). See -- 'prop_c0120_identity'. prop_c0102_identity :: Grid -> Property prop_c0102_identity g = and [xsize >= 3, ysize >= 3, zsize >= 3] ==> c t0 0 1 0 2 ~= (c t0 1 0 0 2 + c t10 1 0 2 0) / 2 where fvs = function_values g (xsize, ysize, zsize) = dims fvs cube0 = cube_at g 1 1 1 cube1 = cube_at g 0 1 1 t0 = tetrahedron cube0 0 -- These two tetrahedra share a face. t10 = tetrahedron cube1 10 -- | Given in Sorokina and Zeilfelder, p. 80, (2.9). See -- 'prop_c0120_identity'. prop_c0210_identity :: Grid -> Property prop_c0210_identity g = and [xsize >= 3, ysize >= 3, zsize >= 3] ==> c t0 0 2 1 0 ~= (c t0 1 1 1 0 + c t10 1 1 0 1) / 2 where fvs = function_values g (xsize, ysize, zsize) = dims fvs cube0 = cube_at g 1 1 1 cube1 = cube_at g 0 1 1 t0 = tetrahedron cube0 0 -- These two tetrahedra share a face. t10 = tetrahedron cube1 10 -- | Given in Sorokina and Zeilfelder, p. 80, (2.9). See -- 'prop_c0120_identity'. prop_c0300_identity :: Grid -> Property prop_c0300_identity g = and [xsize >= 3, ysize >= 3, zsize >= 3] ==> c t0 0 3 0 0 ~= (c t0 1 2 0 0 + c t10 1 2 0 0) / 2 where fvs = function_values g (xsize, ysize, zsize) = dims fvs cube0 = cube_at g 1 1 1 cube1 = cube_at g 0 1 1 t0 = tetrahedron cube0 0 -- These two tetrahedra share a face. t10 = tetrahedron cube1 10 -- | All of the properties from Section (2.9), p. 80. These require a -- grid since they refer to two adjacent cubes. p80_29_properties :: Test.Framework.Test p80_29_properties = testGroup "p. 80, Section (2.9) Properties" [ testProperty "c0120 identity" prop_c0120_identity, testProperty "c0111 identity" prop_c0111_identity, testProperty "c0201 identity" prop_c0201_identity, testProperty "c0102 identity" prop_c0102_identity, testProperty "c0210 identity" prop_c0210_identity, testProperty "c0300 identity" prop_c0300_identity ] grid_tests :: Test.Framework.Test grid_tests = testGroup "Grid Tests" [ trilinear_c0_t0_tests, p80_29_properties, testCase "tetrahedra collision test isn't too sensitive" test_tetrahedra_collision_sensitivity, testProperty "cube indices within bounds" prop_cube_indices_never_go_out_of_bounds ] -- Do the slow tests last so we can stop paying attention. slow_tests :: Test.Framework.Test slow_tests = testGroup "Slow Tests" [ testCase "trilinear reproduced" test_trilinear_reproduced, testCase "trilinear9x9x9 reproduced" test_trilinear9x9x9_reproduced, testCase "zeros reproduced" test_zeros_reproduced ]