-- | The Grid module just contains the Grid type and two constructors -- for it. We hide the main Grid constructor because we don't want -- to allow instantiation of a grid with h <= 0. module Grid where import Test.QuickCheck (Arbitrary(..), Gen, Positive(..)) import Cube (Cube(Cube), find_containing_tetrahedra) import FunctionValues import Misc (flatten) import Point (Point) import Tetrahedron (polynomial) import ThreeDimensional (contains_point) -- | Our problem is defined on a Grid. The grid size is given by the -- positive number h. The function values are the values of the -- function at the grid points, which are distance h from one -- another in each direction (x,y,z). data Grid = Grid { h :: Double, -- MUST BE GREATER THAN ZERO! function_values :: [[[Double]]] } deriving (Eq, Show) instance Arbitrary Grid where arbitrary = do (Positive h') <- arbitrary :: Gen (Positive Double) fvs <- arbitrary :: Gen [[[Double]]] return (make_grid h' fvs) -- | The constructor that we want people to use. If we're passed a -- non-positive grid size, we throw an error. make_grid :: Double -> [[[Double]]] -> Grid make_grid grid_size values | grid_size <= 0 = error "grid size must be positive" | otherwise = Grid grid_size values -- | Creates an empty grid with grid size 1. empty_grid :: Grid empty_grid = Grid 1 [[[]]] -- | Returns a three-dimensional list of cubes centered on the grid -- points of g with the appropriate 'FunctionValues'. cubes :: Grid -> [[[Cube]]] cubes g | fvs == [[[]]] = [[[]]] | head fvs == [[]] = [[[]]] | otherwise = [[[ Cube (h g) i j k (make_values fvs i j k) | i <- [0..xsize]] | j <- [0..ysize]] | k <- [0..zsize]] where fvs = function_values g zsize = (length fvs) - 1 ysize = length (head fvs) - 1 xsize = length (head $ head fvs) - 1 -- | Takes a grid and a position as an argument and returns the cube -- centered on that position. If there is no cube there (i.e. the -- position is outside of the grid), it will return 'Nothing'. cube_at :: Grid -> Int -> Int -> Int -> Maybe Cube cube_at g i j k | i < 0 = Nothing | j < 0 = Nothing | k < 0 = Nothing | i >= length (cubes g) = Nothing | j >= length ((cubes g) !! i) = Nothing | k >= length (((cubes g) !! i) !! j) = Nothing | otherwise = Just $ (((cubes g) !! i) !! j) !! k -- | Takes a 'Grid', and returns all 'Cube's belonging to it that -- contain the given 'Point'. find_containing_cubes :: Grid -> Point -> [Cube] find_containing_cubes g p = filter contains_our_point all_cubes where all_cubes = flatten $ cubes g contains_our_point = flip contains_point p zoom :: Grid -> Int -> [[[Double]]] zoom g scale_factor | fvs == [[[]]] = [] | head fvs == [[]] = [] | otherwise = [[[f p | i <- [0..scaled_zsize], let i' = scale_dimension i, let j' = scale_dimension j, let k' = scale_dimension k, let p = (i', j', k') :: Point, let c = (find_containing_cubes g p) !! 0, let t = (find_containing_tetrahedra c p) !! 0, let f = polynomial t] | j <- [0..scaled_ysize]] | k <- [0..scaled_xsize]] where scale_dimension :: Int -> Double scale_dimension x = (fromIntegral x) / (fromIntegral scale_factor) fvs = function_values g scaled_zsize = ((length fvs) - 1) * scale_factor scaled_ysize = (length (head fvs) - 1) * scale_factor scaled_xsize = (length (head $ head fvs) - 1) * scale_factor